Tetsu-to-Hagané
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1883-2954
PRINT ISSN: 0021-1575

Tetsu-to-Hagané Advance Publication

  • Lowest Fatigue Limit Estimation of Ductile Cast Iron Joints by Considering Maximum Defect Size to Replace Welded Joints

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-017

    In our earlier study, the authors revealed that the fatigue limit of ductile cast iron (DCI) specimens whose shapes are similar to the welded joint shapes is about three times larger than that of the welded joint specimens. However, since many defects are usually included in the DCI specimens, the fatigue limit of DCI joints decreases with increasing the maximum defect size. In this paper, therefore, the maximum defect size is estimated by using statistics of extremes. Then, the lowest fatigue limit corresponding to the maximum defect size is estimated from the 4 parameter model and compared with the lowest fatigue limit of the welded joint. As a result, it was confirmed that the lowest fatigue limit of the DCI specimens is about twice as large as the welded joint.
  • Impact Property of Case Hardening Steel Subjected to Combined Heat Treatment with Excess Vacuum Carburizing and Subsequent Induction Hardening

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2018-166

    Charpy impact value of the case hardening steel subjected to combined heat treatment with excess vacuum carburizing and subsequent induction hardening was evaluated. The purpose of this study is to clarify the effect of retained austenite and cementite on the impact property. The characteristic of combined heat treatment is that the initial microstructure can be designed easily. The initial microstructure is designed by carburizing and annealing at the hyper-eutectoid composition of 1.3 mass% C and subsequent induction heating temperature is chosen between Acm and A1 to obtain different amounts of retained austenite and cementite. The impact value improves by the induction hardening with increasing heating temperature and the tempering. The steel treated at the low heating temperature shows intra-granular fracture irrespective of the presence of pro-eutectoid cementite. As the heating temperature increases, the formation of C solid solution progresses by the decomposition of cementite and increased retained austenite transforms into the deformation-induced martensite by the impact energy, thereby increases intra-granular strength. Hence critical fracture strength transits to grain boundary strength and showed inter-granular fracture at the interface of cementite and matrix in this study. The impact value showed the correlation with the amounts of retained austenite before the test and the decrement in retained austenite before and after the test. The effect of retained austenite is due to the plastic deformation of austenite, the increase of the compressive residual stress generated by deformation-induced martensite transformation, and the consumption of the impact energy as the driving force for deformation-induced martensite transformation.
  • Relationship between the Morphology of Mn-oxides Simulated by Ion Plating and Phosphatability for Mn-added High Strength Cold-Rolled Steel Sheets

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-007

    It is well known that Si, Mn and B, the alloying elements for high strength steel sheets, easily form oxides on the steel surface during annealing in a reducing atmosphere, and those oxides have a large influence on the surface performance of steel sheets, such as phosphatability. In this work, we discovered that the oxidation behavior of Mn-added high strength cold-rolled steel sheets could be simulated on mild steel sheets by using an ion plating method and investigated the relationship between the morphology of Mn oxides and phosphatability under the condition that both the amount and kind of Mn oxides were fixed. In a simulated Mn-O layer, fine surface oxides, which covered most of the steel surface, were observed after annealing. On the other hand, in a Mn-B-O layer, large globular surface oxides were observed on the steel surface, and the Fe surface was partially bare. The B-Mn compound oxide is considered to be in a molten phase during annealing because the melting point of the compound oxide is lower than the annealing temperature, and as a result, it is thought that large B-Mn compound oxides coagulate and grow during annealing. In addition, it was found that the large B-Mn compound oxides (about 500 nm) interfere with steel dissolution in the phosphate solution. These results demonstrate the importance of controlling the morphology as well as the amount and kind of surface oxides for obtaining good phosphatability of Mn-added high strength cold-rolled steel sheets.
  • Texture Evolution during Recrystallization and Grain Growth in Heavily Cold-rolled Fe-3%Si Alloy

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-013

    Recrystallization and grain growth are important phenomena for controlling the mechanical and magnetic properties of steels through texture. Only a limited number of studies have been carried out on texture evolution during recrystallization and grain growth in heavily cold-rolled Si steel. The present study first focuses on clarifying the texture evolution during normal grain growth, followed by an investigation into the development of the {411}<148> component during recrystallization. The {411}<148> component is remarkably developed during normal grain growth after the completion of recrystallization. At just fully recrystallized stage, the diameters of the {411}<148> grains were larger than that of the grains with other orientations. Therefore, the {411}<148> grains significantly grew owing to the size advantage.Just at the commencement of recrystallization, differences in grain diameter of recrystallized grains in terms of crystal orientation were not detected. However, it is worthwhile to mention that the nucleation of {411}<148> recrystallized grains is unexpectedly fast in heavily cold-rolled Si steel. Recrystallized {411}<148> grains were observed to nucleate in the deformed α-fiber grains, especially near the grain boundaries. Nuclei with {411}<148> orientation grow easily due to the high mobility of the interface between the recrystallized/non-recrystallized grains and the high driving force. Consequently, the diameter of a {411}<148> recrystallized grain becomes relatively large upon the completion of recrystallization. This contributes to the selective grain growth during the normal grain growth stage because of the size effect.
    x

    Readers Who Read This Article Also Read

    1. Mathematical Modeling of Flow and Heat Transfer Behavior of Liquid Slag in Continuous Casting Mold with Argon Blowing ISIJ International Advance Publication
  • Structural Change in Hot-Stamped GA Coating and Influence on Corrosion Resistance by Tempering

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2018-155

    Hot-stamped galvannealed steel sheets (GA) are widely applied to produce automobile components that require high strength. The hot-stamped components tempered for the control of strength improve the collision property. This study investigated the structural changes in the hot-stamped GA coating and the influence on corrosion resistance by tempering. It has been revealed that by tempering between 500-600 degrees Celsius, the Fe-Zn solid-solution phase in the hot-stamped GA coating changed into two phases: the Γ phase and the Fe-Zn solid-solution phase with less Zn, and these changes in the coating structure improved the corrosion resistance. The phase decomposition is considered to result from discontinuous precipitation of the Fe-Zn supersaturated-solid-solution.
  • Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-008

    Global warming has been regarded as a crucial issue in every industry. Since long term global goal was set on the basis of Paris Agreement, a considerable evolution toward CO2 mitigation in 2050 is desired even in steel industry. Until now, many various technology developments were carried out in the ironmaking area; however, the innovative progress beyond the past progressive developments is required to attain the long-term goal in 2050. This review focuses on the current technology development on CO2 mitigation to date and the design of an ambitious ironmaking process for the future. In particular, the directions for low carbon and decarbonization are discussed from the viewpoints of technological aspects and the comprehensive consistency with sustainability in steel industry. Moreover, the perspectives on CCU (CO2 Capture and Utilization) and hydrogen ironmaking process based on the renewable energy aiming for carbon direct avoidance are described.
  • Fatigue Strength Improvement by Replacing Welded Joints with Ductile Cast Iron Joints

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2018-158

    In this study fatigue experiments are conducted for ductile cast iron (DCI) to compare with the fatigue strength of cruciform welded joints. Here, several DCI specimens are prepared to have nearly the same fatigue strength in smooth specimens before welding and to have similar cruciform shapes in the welded joints. It is found that the fatigue strength of DCI specimen is about three times larger than that of the welded joint specimens. The fatigue strength improvement can be explained in terms of the small stress concentration factor, notch insensitivity and compressive residual stress generated by shot blasting for DCI joints.
  • Competition between Fatigue Crack Growth and Wear under Rolling – Sliding Contact Condition

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2018-138

    A numerical model was developed to simulate the competition between crack initiation and growth by rolling contact fatigue (RCF) and wear in a railhead. The simulation model assumes that the materials are polycrystalline ferrite and pearlite and that RCF crack initiation is determined by the total accumulated plastic shear strain. The growth of short cracks is calculated using the Hobson model and the Archard model is used to calculate wear. In order to validate the developed model, twin disc rolling-sliding contact fatigue tests were performed. In the tests, rail material and slip ratio were changed and the crack initiation, crack growth and wear trace on the contact surfaces were investigated by SEM, EPMA and shape measuring instrument. Under these test conditions, simulations were performed using the developed model and compared the results. It was confirmed that the crack occurred at the nonmetallic inclusion/ferrite and ferrite/pearlite boundary at almost the same locations, therefore, the assumption of the model for the initiation was validated. It was also found that cracks of almost the same length and the direction existed in the vicinity of the contact surface at the same rolling cycles. Regarding wear, it was found that accurate analyses can be performed by considering the change of the contact pressure distribution and selecting an appropriate wear coefficient.
    x

    Readers Who Read This Article Also Read

    1. Notch Sensitivity of the Fatigue Limit in High-Strength Steel ISIJ International Vol.56(2016), No.8
  • Structural and Mechanical Characterizations of Top Dross in a Molten Zinc Bath

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2018-127

    In a molten zinc bath in a continuous galvanizing line (CGL), top dross particles crystallize as Fe-Al-Zn intermetallic compounds. These particles easily adhere to the steel sheets causing surface defects. Therefore, controlling the top dross particles is a key issue. The present study focused on the structural and mechanical characterizations of top dross particles using an electron probe micro analyzer, X-ray diffraction, electron back scattering diffraction, Vickers hardness measurement and nano-indentation measurement. The following results were obtained: (1) The crystal structure of top dross particles Fe2Al5Znx having Fe: 37~38 wt%, Al: 44~45 wt% and Zn: 18~19 wt% belongs to the orthorhombic system with a lattice constant of a=7.61 Å, b=6.48 Å and c=4.23 Å. The a axis of Fe2Al5Znx becomes shorter, while the b and c axes become longer compared to those of binary Fe2Al5. (2) The top dross particles with the faceted interface were postulated to coarsen by the mechanism of the anisotropic interface energy between the top dross particles and molten Zn as a driving force rather than by the aggregation mechanism. (3) The hardness and the elastic modulus of the top dross particles are the lowest in the [001] direction like Fe2Al5, and are lower than those of Fe2Al5. (4) The fracture toughness of top dross particles is approximately 1.1 MPa·m1/2, which is slightly lower than that of Fe2Al5.

Article Access Ranking

26 May. (Last 30 Days)

  1. Numerical Investigation of Effect of Casting Speed on Flow Characteristics of Molten Steel in Multistrand Tundish ISIJ International Advance Publication
  2. Preface to the Special Issue on “Innovation for Ironmaking Systems Combined with Low-Carbon, Material Recycle and Energy Saving Technologies” ISIJ International Vol.59(2019), No.4
  3. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Advance Publication
  4. Ensemble Prediction of Tundish Open Eyes Using Artificial Neural Networks ISIJ International Advance Publication
  5. Effects of Surface Microstructure on Selective Oxidation Morphology and Kinetics in N2 + 5%H2 Atmosphere with Variable Dew Point Temperature ISIJ International Vol.59(2019), No.5
  6. Effect of Nut Coke Addition on Physicochemical Behaviour of Pellet Bed in Ironmaking Blast Furnace ISIJ International Vol.59(2019), No.5
  7. CO2 Emission Reduction and Exergy Analysis of SMART Steelmaking System Adaptive for Flexible Operating Conditions ISIJ International Vol.59(2019), No.4
  8. Dynamic Control of Flatness and Elongation of the Strip in a Skin Pass Mill Tetsu-to-Hagané Vol.105(2019), No.5
  9. Internal Friction Behavior Associated with Martensitic Decomposition in Low-carbon Dual-phase Steel ISIJ International Advance Publication
  10. A Kinetic Model of Mass Transfer and Chemical Reactions at a Steel/Slag Interface under Effect of Interfacial Tensions ISIJ International Vol.59(2019), No.5

Search Phrase Ranking

26 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. deadman coke
  5. joo hyun park
  6. continuous casting
  7. gtaw tig pulsed feed wire
  8. mold flux, b2o3
  9. wire drawing
  10. a structurally-based viscosity model of the fully liquid slags in the cao-mgo-al2o3-feo-sio2 system