Tetsu-to-Hagané
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1883-2954
PRINT ISSN: 0021-1575

Tetsu-to-Hagané Vol. 72 (1986), No. 5

Article Access Ranking

16 May. (Last 30 Days)

  1. Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel ISIJ International Vol.62(2022), No.2
  2. Interaction Coefficients of Mo, B, Ni, Ti and Nb with Sn in Molten Fe–18mass%Cr Alloy ISIJ International Vol.62(2022), No.3
  3. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of MgO Source on Phase Formation during Heating ISIJ International Vol.62(2022), No.4
  4. Dissolution Kinetics of Synthetic FeCr2O4 in CaO–MgO–Al2O3–SiO2 Slag ISIJ International Vol.62(2022), No.4
  5. Surface Quality Evaluation of Heavy and Medium Plate Using an Analytic Hierarchy Process Based on Defects Online Detection ISIJ International Advance Publication
  6. Influence of Stabilizing Elements on Ductile-Brittle Transition Temperature (DBTT) of 18Cr Ferritic Stainless Steels ISIJ International Vol.62(2022), No.4
  7. Exploration of the Relationship between the Electromagnetic Field and the Hydrodynamic Phenomenon in a Channel Type Induction Heating Tundish Using a Validated Model ISIJ International Vol.62(2022), No.4
  8. Assessment of Blast Furnace Operational Constraints in the Presence of Hydrogen Injection ISIJ International Advance Publication
  9. Phenomenological Understanding about Melting Temperature of Multi-Component Oxides Tetsu-to-Hagané Vol.108(2022), No.4
  10. Numerical Simulation of Charging Biochar Composite Briquette to Blast Furnace ISIJ International Vol.62(2022), No.4

Search Phrase Ranking

16 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. jet impingement
  5. jet impingement + cooling + runout table
  6. refractory
  7. steel
  8. viscosity of slag fluorine
  9. 1. m. nainar, a. veawab: ind. eng. chem. res., 48(2009), 9299. https://doi.org/10.1021/ie801802a 2. c. h. yu, c. h. huang, c. s. tan: aerosol air qual. res., 12(2012), 745. https://doi.org/10.4209/aaqr.2012.05.0132 3. g. léonard, c. crosset, d. toye, g. heyen: comput. chem. eng., 83(2015), 121. https://doi.org/10.1016/j.compchemeng.2015.05.003 4. e. e. ünveren, b. ö. monkul, ş. sarıoğlan, n. karademir, e. alper: petroleum, 3(2017), 37. https://doi.org/10.1016/j.petlm.2016.11.001 5. m. b. yue, b. sun, y. cao, y. wang, j. wang: chem. eur. j., 14(2008), 3442. https://doi.org/10.1002/chem.200701467 6. w. choi, j. park, c. kim, m. choi: chem. eng. j., 408(2021), 127289. https://doi.org/10.1016/j.cej.2020.127289 7. c. chen, s. t. yang, w. s. ahn, r. ryoo: chem. commun., 24(2009), 3627. https://doi.org/10.1039/b905589d 8. p. zhao, g. zhang, y. xu, y. k. lv, z. yang, h. cheng: energy and fuels, 33(2019), 3357. https://doi.org/10.1021/acs.energyfuels.8b04278 9. k. dong, w. liu, r. zhu: high temp. mater. process, 34(2015), 539. https://doi.org/10.1515/htmp-2014-0076 10. s. wang, s. xu, s. gao, p. xiao, m. jiang, h. zhao, b. huang, l. liu, h. niu, j. wang, d. guo: sci. rep., 11(2021), 1. https://doi.org/10.1038/s41598-021-90532-9 11. q. t. vu, h. yamada, k. yogo: ind. eng. chem. res., 60(2021), 4942. https://doi.org/10.1021/acs.iecr.0c05694 12. m. wang, l. yao, j. wang, z. zhang, w. qiao, d. long, l. ling: appl. energy, 168(2016), 282. https://doi.org/10.1016/j.apenergy.2016.01.085 13. a. heydari-gorji, a. sayari: ind. eng. chem. res., 51(2012), 6887. https://doi.org/10.1021/ie3003446 14. s. a. didas, r. zhu, n. a. brunelli, d. s. sholl, c. w. jones: j. phys. chem. c., 118(2014), 12302. https://doi.org/10.1021/jp5025137 15. q. t. vu, h. yamada, k. yogo: ind. eng. chem. res., 57(2018), 2638. https://doi.org/10.1021/acs.iecr.7b04722 16. q. t. vu, h. yamada, k. yogo: energy & fuels, 33(2019), 3370. https://doi.org/10.1021/acs.energyfuels.8b04307 17. x. zhang, x. zheng, s. zhang, b. zhao, w. wu: ind. eng. chem. res., 51(2012), 15163. https://doi.org/10.1021/ie300180u 18. h. yamada, f. a. chowdhury, j. fujiki, k. yogo: acs sustain. chem. eng., 7(2019), 9574. https://doi.org/10.1021/acssuschemeng.9b01064 19. x. wang, q. guo, t. kong: chem. eng. j., 273(2015), 472. https://doi.org/10.1016/j.cej.2015.03.098 20. f. s. taheri, a. ghaemi, a. maleki: energy and fuels, 33(2019),11465. https://doi.org/10.1021/acs.energyfuels.9b02636 21. a. sayari, y. belmabkhout: j. am. chem. soc., 132(2010), 6312. https://doi.org/10.1021/ja1013773
  10. 10.1016/j.apenergy.2016.01.085