Electromagnetic Migration Force Acting on Two Non-conducting Particles in DC Electromagnetic Force Field
Yukihiro KUBOTA, Noboru YOSHIKAWA, Shoji TANIGUCHI
pp. 113-120
Abstract
Interaction between two non-conducting particles in DC electromagnetic field was studied by numerical analysis. Experiments were conducted on the particle behavior using an electrolytic cell, and compared with the calculated results. In the calculation, distributions of electric field, current, electromagnetic force and pressure field were obtained for the single particle case and for the three different configurations of two particles, in which the cascading directions of two particles are parallel to the directions of electric current (case 1), magnetic field (case 2) and electromagnetic force (case 3). Exerting electromagnetic forces on the particles were calculated by integration of the pressure on the surface area.
Interaction forces between the two particles were shown to be absent, namely, neither attractive nor repulsive in all the cases. However, the magnitude of the electromagnetic forces exerting on the particles (Gc) differed with the configuration of two particles. As the interparticle distances decreased, Gc of case 2 became less than that of single sphere, however, Gc became lager in the case 1 and case 3. This tendency agreed with the model experiments, qualitatively.