Tetsu-to-Hagané
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1883-2954
PRINT ISSN: 0021-1575

Tetsu-to-Hagané Vol. 106 (2020), No. 2

  • Preface to the Special Issue “Intelligent Abnormality Diagnosis for Steel Works by Using Area Sensing”

    pp. 59-60

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.106.59

    x

    Readers Who Read This Article Also Read

    1. Ironworks Conveyor Monitoring Using Mirror-drive High-speed Active Vision Tetsu-to-Hagané Vol.106(2020), No.2
    2. Behavior of Jet from Nozzle Set on Side Wall of Lance Tetsu-to-Hagané Vol.106(2020), No.2
    3. Unknown Anomaly Detection Using Hidden Markov Model and AreaSensing Techniques Tetsu-to-Hagané Vol.106(2020), No.2
  • Ironworks Conveyor Monitoring Using Mirror-drive High-speed Active Vision

    pp. 61-70

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-059

    In this study, dynamic deflections and vibrations of belt conveyors operating in ironworks are observed using a high-speed telephoto mirror-drive active vision that can simultaneously switch viewpoints and capture zooming-in images at hundreds of frames per second. 160-fps video images for a belt conveyor are captured by our active vision system with pan-and-tilt scan as multiple high-frame-rate video images in the experiments, and small deflections and vibrations of multiple belts and pillars, whose peak frequencies are 10 Hz or more, are estimated with the precision of dozens of micrometers by image analysis such as DIC (digital image correlation) when the camera system is 5 m or more away from the conveyor to be monitored.
  • Application of Displacement and Rotating Angle Measurement in Time Series Using Sampling Moire Method to a Plant Structure

    pp. 71-79

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-081

    A sampling moire method is applied to displacement and rotating angle measurement in time series of a practical conveyor belt used in a steel plant in this paper. It is required to develop efficient inspection methods of the healthiness. Authors recently proposed a sampling moire method to measure displacement distribution from a single shot two-dimensional grating image. The sampling moire method is one of the convenient phase analysis methods. The features of the method are high precision, non-contacting, and calibration free. Authors also proposed a rotating angle measurement method using the sampling moire method. Measuring displacement and rotating angle of a part of the structure using a camera in time series for recognizing the dynamic behavior is one of the efficient inspection methods. The purpose of this study is to confirm that the measurement methods of displacement and rotating angle in time series have ability to be applied to inspection of the plant structure healthiness with recognizing the dynamic behavior. In this experiment, displacements and rotating angles at two posts supporting belt rollers are measured using two sampling moire cameras in several conditions. The results suggest that the differences of structure properties can be inspected from measured displacements and rotating angles.
    x

    Readers Who Read This Article Also Read

    1. Unknown Anomaly Detection Using Hidden Markov Model and AreaSensing Techniques Tetsu-to-Hagané Vol.106(2020), No.2
    2. Behavior of Jet from Nozzle Set on Side Wall of Lance Tetsu-to-Hagané Vol.106(2020), No.2
    3. Ironworks Conveyor Monitoring Using Mirror-drive High-speed Active Vision Tetsu-to-Hagané Vol.106(2020), No.2
  • A Method to Estimate Initial States, Inputs and Parameters for Diagnosis of Equipment

    pp. 80-90

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-061

    The equipment and the structures in steel works are used in a very long term. Therefore, the inspections and the maintenance are indispensable. To make this more effective, much effort has been devoted to develop methods of fault detection and diagnosis. However, the effectiveness of those methods may be limited due to the tradeoff between false positive and false negative reactions. To mitigate the tradeoff, this paper considers to use model sets involving parameters and disturbances that are expected to change. More specifically, we first propose a method to estimate the parameters and the disturbance so as to minimize the deviation between the real output and the output generated by the model sets. The resulting residual enables us to conduct the health diagnosis. The effectiveness of the proposed framework is examined by using numerical examples.
    x

    Readers Who Read This Article Also Read

    1. Unknown Anomaly Detection Using Hidden Markov Model and AreaSensing Techniques Tetsu-to-Hagané Vol.106(2020), No.2
    2. Behavior of Jet from Nozzle Set on Side Wall of Lance Tetsu-to-Hagané Vol.106(2020), No.2
    3. Ironworks Conveyor Monitoring Using Mirror-drive High-speed Active Vision Tetsu-to-Hagané Vol.106(2020), No.2
  • Unknown Anomaly Detection Using Hidden Markov Model and AreaSensing Techniques

    pp. 91-99

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-066

    In this paper, we propose an anomaly detection method for equipment abnormalities using data measured by AreaSensing techniques. The data are gathered from the vibration of equipment installed in a wide area or large scales such as conveyor equipment and bridges. It is difficult to know which data of displacement, velocity, and acceleration is appropriate in advance because each frequency component is different. So, we apply the Hidden Markov Model, which estimates the latent state for each decomposition level by continuously frequency-resolving time series data using Wavelet method. The analysis results show that the normal and abnormally states are estimated. However, as the problem of this method, it is not possible to compare and apply the information criteria such as AIC to the Wavelet decomposed data as it is to appropriately decide which data and model parameters should be used. To overcome the defects, we propose a new evaluation function and developed a method to find a model that can stably estimate the normal and abnormal state transition, even for data separated into different frequencies. Besides, when the current measurement data contains no abnormal state, there was a problem of extracting multiple latent states that are normal but different. We focus on the difference between the state transition probabilities of the normal and unknown model. As the experimental result, the effectiveness of the proposed method has been confirmed. By using the method, it is possible to continuously diagnose abnormalities using vibration measurement data measured by AreaSensing techniques.
  • Behavior of Jet from Nozzle Set on Side Wall of Lance

    pp. 100-107

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-068

    In a top-blowing converter, when a distance between the top-blowing lance and the molten metal surface increases, post-combustion ratio increases, but its heat transfer efficiency to the molten metal decreases. Therefore, a fundamental study of behavior of a gas jet from the lance nozzles was carried out in order to develop a new oxygen top-blowing lance with side nozzles with the aim of achieving both higher post-combustion ratio and higher heat supply to the molten metal in converter.In order to design the shape of the side nozzles and blowing conditions, cold model experiments and numerical calculations were carried out to investigate the effect of the inclination angle of the side nozzles and the flow rate on the gas jet behavior of the nozzles. It was found that the gas jet from the side nozzles was deflected to the direction away from the side wall of the lance due to a difference in the pressure distribution at the nozzle outlet. The deflection angle can be estimated by an equation using the supply pressure, atmospheric pressure and inclination angle of the nozzle.
  • Formation Mechanism of Coarse Austenite Grain during Hot Forging and Cooling in Case Hardening Steel

    pp. 108-120

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-070

    Abnormally coarse microstructure consisting of coarse pearlite and bainite has been sometimes observed in case hardening steels when they are slowly cooled after hot forging. In order to avoid this abnormal microstructure, it is of industrial importance to clarify its formation mechanism. In the present study, effects of hot deformation condition and cooling rate on the formation of austenite grain coarsening during cooling were investigated by a thermomechanical simulator for JIS SCM420 (0.20C-0.26Si-0.82Mn-1.03Cr-0.15Mo steel, in mass%).Coarse microstructures were observed when the specimen was deformed slightly at higher temperature after large deformation and subsequently cooled at slow cooling rate. In order to clarify the formation mechanism of coarse austenite grain, strain distribution (GOS: Grain Orientation Spread) in reconstructed austenite orientation map were analyzed for specimens quenched just after deformation. In the condition where coarse austenite formed, the GOS map made it clear that strain was introduced inhomogeneously grain by grain. This result suggested that abnormal austenite grain growth during slow cooling was induced by inhomogeneous strain distribution because growth of recrystallized grains (relatively low dislocation density) into work hardened grains (relatively high dislocation density) was driven by strain energy difference in addition to reduction of grain boundary area.
    x

    Readers Who Read This Article Also Read

    1. Shape of Capsules Containing Healing Agent for Self-Healing Coating, by heat treatment Zairyo-to-Kankyo Vol.68(2019), No.6
    2. Steel Construction of Buildings Tetsu-to-Hagané Vol.59(1973), No.10
    3. Effect of Carbon Content on Machinability of Steel in Gear Cutting Tetsu-to-Hagané Vol.106(2020), No.2
  • Effect of Carbon Content on Machinability of Steel in Gear Cutting

    pp. 121-131

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.TETSU-2019-077

    Machinability of steels containing different carbon contents is evaluated in cutting with a fly tool of TiAlN coated high speed steel, as performed in gear cutting. In order to investigate the effect of carbon content on the cutting process, 0.2, 0.4 and 0.6 mass% C steels are prepared with controlling nearly the same hardness. The cutting tests are conducted to measure the cutting forces, observe the chip formations and analyze the damage on the rake and flank faces of the tools. The machinability of the tested steels is compared each other in terms of the cutting model in the cutting force simulation. The orthogonal cutting data are identified to minimize the discrepancies between the measured and the simulated forces. The shear stress on the shear plane becomes large at high carbon contents, and thus the cutting force increases with the carbon content. On the rake face of the tool, substrate softening and cracking in the coated thin layer occur in a certain cutting length. In cutting of the 0.6 mass% C steel, the cracks initiate rapidly in the coated thin layer on the rake face due to large cutting forces and cutting heat. Small flank wear is observed in the cutting of 0.2 and 0.4 mass% C steels, while in the 0.6 mass% C steel thermal wear with adhesion is promoted at high cutting temperatures.

Article Access Ranking

27 Feb. (Last 30 Days)

  1. Segregation Mechanism of Al-based Oxides on Surface of Zn-0.2mass%Al Hot-dip Galvanized Steel Sheets ISIJ International Advance Publication
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Preface to the Special Issue “Intelligent Abnormality Diagnosis for Steel Works by Using Area Sensing” Tetsu-to-Hagané Vol.106(2020), No.2
  4. Effect of Silicon, Manganese and Heating Rate on the Ferrite Recrystallization Kinetics ISIJ International Advance Publication
  5. Multiscale Analysis of MnS Inclusion Distributions in High Strength Steel ISIJ International Advance Publication
  6. In-situ Phase Identification of Crystallized Compound from 2CaO·SiO2–3CaO·P2O5 Liquid ISIJ International Advance Publication
  7. A Data-Driven Multiobjective Dynamic Robust Modeling and Operation Optimization for Continuous Annealing Production Process ISIJ International Advance Publication
  8. Physico-chemical Properties of Mill Scale Iron Powders ISIJ International Advance Publication
  9. Numerical Simulation of Impinging Gas Jet on a Liquid Bath Using SPH Method ISIJ International Advance Publication
  10. A Review on Prevention of Sticking during Fluidized Bed Reduction of Fine Iron Ore ISIJ International Vol.60(2020), No.1

Search Phrase Ranking

27 Feb. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. corrosion resistant steel
  5. ferrite bainite steel
  6. low cycle fatigue
  7. stainless steel
  8. titanium
  9. damage
  10. damage model