Basic Examination of Briquetting Technology for Ferro-coke Process on 0.5 t/d Bench Scale Plant
Takashi Anyashiki, Hidekazu Fujimoto, Tetsuya Yamamoto, Takeshi Sato, Hidetoshi Matsuno, Michitaka Sato, Kanji Takeda
pp. 515-523
Abstract
In recent years, the development of innovative energy saving technologies for preventing global warming has become necessary. Means of realizing innovative energy saving in the steel industry and radical low reduction agent ratio (RAR) operation in the blast furnace include improvement of the heat balance and active control of the reduction equilibrium (temperature of thermal reserve zone).
The ‘R&D and preparatory research work for the blast furnace based innovative ironmaking technologies’ was actively promoted by the New Energy and industrial Technology Development Organization (NEDO) in November 2006 for usage of low graded raw materials and CO2 mitigation in ironmaking process. The production processes and reaction mechanisms in a blast furnace were studied for an innovative raw material -Ferro-coke- for satisfying both high coke reactivity and iron ore reduction, focusing on the temperature of the thermal reserve zone.
Ferro-coke produced by mixing coal and iron ore (pellet feed) and densification by briquetting, followed by carbonization of the briquetted materials. The results of a fundamental investigation of the production process for ferro-coke as a new blast furnace burden material obtained by carbonization of the densified briquettes clarified the following:
(1) The adhesion ratio of each briquette was measured for the mix of slightly caking coal and a non-caking coal at a lab-scale carbonization furnace. The adhesion of each briquette strongly depends on coal type and the blending condition for each coal. The adhesion was prevented by addition of the non-caking coal.
(2) In the ferro-coke production, two conventional binders are used, coal-tar pitch from coke oven, SOP, and pitch from petro-chemical industry, asphalt pitch, ASP, to improve green briquette and ferro-coke strength. The synergistic effect of ASP and SOP can be regarded as a shift of low molecular weight components of ASP to SOP.
(3) The bench scale plant of a production capacity 0.5 t/d was designed to realize the heating pattern by means of an electric heater. Continuous experiments for more than 48hours have been confirmed the ferro-coke process reliability at a bench scale plant.
Readers Who Read This Article Also Read
Tetsu-to-Hagané Vol.101(2015), No.8
Tetsu-to-Hagané Vol.100(2014), No.5
Tetsu-to-Hagané Vol.101(2015), No.8