Tetsu-to-Hagané
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1883-2954
PRINT ISSN: 0021-1575

Tetsu-to-Hagané Vol. 94 (2008), No. 5

  • Application of Laser Ablation–Laser Induced Fluorescence Spectroscopy to Analysis of Steel

    pp. 155-159

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.94.155

    Fluorescence of atomic carbon in steel was detected at 193.09 nm by the excitation with laser pulse tuned at 247.85 nm. Solid steel samples were irradiated by pulsed Nd:YAG laser (ablation laser) to generate atomic vapor, which was then illuminated by the probe laser. One of ionic iron lines is very close to the excitation line for carbon. However, its interaction was not found to be very significant because population of ionic iron decreased faster than that of atomic carbon in a transient plasma induced by the ablation laser. When the probe laser was coaxial with the ablation laser, fluorescence spectra with high selectivity was observed with delay of 50 μs between two lasers. Fluorescence intensities were in a good linear correlation with contents of carbon in steel samples in a range of 83–5000 μg/g, which suggested that quantitative detection of carbon would be possible with the developed method.
  • Possibility of Applying Superplastic Forging to the Micro Forming of SUS304

    pp. 160-163

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.94.160

    Micro forging using the superplasticity was tried, at austenitic stainless steal SUS304. The grains were refined by thermomechanical treatment with reverse transformation of strain induced martensite to austenite. The average grain size was about 250 nm. In the micro forging, Vickers indentation added to surface to grinded and polished flat die were used. The grain refined material, on the surface of the sample, it was possible to add a quadrangular pyramid. Bottom line of quadrangular pyramid were about 50 μm, and height was about 10 μm. On the other hand, it was not able to be carried out this process.
  • Ultrafine-grained Steel Bars Fabricated Using Commercial Caliber-rolling

    pp. 164-172

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.94.164

    A caliber-rolling process with new type groove characterized by multidirectional deformation was proposed to fabricate ultrafine-grained (UFG) steel bars efficiently. To impose a large strain into center of cross-section, the groove configuration of foval (flat-like-oval) type was designed. Three-dimensional finite element simulation (FE simulation) was utilized for this purpose, and the caliber-rolling process of square/foval pass was investigated from the viewpoints of a large strain accumulation and cross-sectional shape variation in a bar. The UFG steel bars were fabricated by using the commercial caliber-rolling with the grooves designed from FE simulation. The cross-sectional shape predicted from FE simulation was in excellent agreement with the shape of the rolled bars. The strain imposed in the rolled bars has a distribution with maximum at the center. The giant strain of 5.2 is accumulative in center regardless of reduction in area of 79%. The good correlation between the strain imposed and the hardness of the rolled bars was confirmed.
  • The Influence of Additional Ni and Cu in Steel on the Galvanizability and Oxidation State of Si, Al, Mn Bearing Steels

    pp. 173-178

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.94.173

    Si, Al and Mn are readily oxidizable elements, then Si, Al, Mn steels have the drawback of poor galvanizability due to the presence of complex Si–Al–Mn oxides on their surface. In order to improve the galvanizability of Si, Al, Mn steels, the effect of the addition of Ni and Cu on the wettability and galvannealing kinetics has been investigated.
    It was shown that the addition of Ni and Cu improved wettability and increased the galvannealing rate. This improvement was due to the change of the sub-micron oxide morphology just before the galvanizing treatment. In the case of C, Si, Al, Mn steel a film of Si–Al–Mn oxide was formed. The addition of Ni and Cu made Si–Al–Mn oxide intermittent and internal oxide formed remarkably.
  • Influence of Solute C on Recrystallization Behavior in Ti Added Low Carbon Cold Rolled Sheet Steel

    pp. 179-187

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2355/tetsutohagane.94.179

    Recovery and recrystallization behavior of the Ti added low carbon steel sheets (0.0096mass%C–0.097mass%Ti) with two different states of carbon atoms were investigated. States of carbon atoms in the hot rolled sheets were characterized by 3-dimensional atom probe (3D-AP) analysis. The recovery was delayed in the sample containing solute carbon. It is considered that this delay arised from the existence of C–Mn or C–Ti dipole. After 85% cold rolling and annealing at 800°C, the specimen without solute carbon showed {111}‹112› recrystallization texture and polygonal ferrite. In contrast, the specimen contained solute carbon showed {111}‹110› recrystallization texture and pancake shaped ferrite microstructure. It is considered that the difference of recovery behavior affects development of the recrystallization texture.

Article Access Ranking

18 Jun. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. A Kinetic Model of Mass Transfer and Chemical Reactions at a Steel/Slag Interface under Effect of Interfacial Tensions ISIJ International Vol.59(2019), No.5
  3. Improvement of Sinter Strength and Reducibility through Promotion of Magnetite Ore Oxidation by Use of Separate Granulating Method ISIJ International Vol.59(2019), No.5
  4. Evaluation of the Structure and Strength of Coke with HPC Binder under Various Preparation Conditions ISIJ International Advance Publication
  5. Effects of Surface Microstructure on Selective Oxidation Morphology and Kinetics in N2 + 5%H2 Atmosphere with Variable Dew Point Temperature ISIJ International Vol.59(2019), No.5
  6. Numerical Investigation of Applying High-carbon Metallic Briquette in Blast Furnace Ironmaking ISIJ International Vol.59(2019), No.5
  7. Evolution Mechanism of Inclusions in H13 Steel with Rare Earth Magnesium Alloy Addition ISIJ International Advance Publication
  8. Effect of Nut Coke Addition on Physicochemical Behaviour of Pellet Bed in Ironmaking Blast Furnace ISIJ International Vol.59(2019), No.5
  9. Formation of Non-Metallic Inclusion and Acicular Ferrite in Ti–Zr Deoxidized Steel ISIJ International Advance Publication
  10. Surface Tension Calculation of Molten Slag in SiO2–Al2O3–CaO–MgO Systems Based on a Statistical Modelling Approach ISIJ International Vol.59(2019), No.5

Search Phrase Ranking

18 Jun. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. deadman coke
  5. inclusions
  6. a structurally-based viscosity model of the fully liquid slags in the cao-mgo-al2o3-feo-sio2 system
  7. bubbling ladle
  8. isij xafs
  9. joo hyun park
  10. mold flux, b2o3