Formation Mechanism of Joint Interface in Cold Spot Joining Method and its Joint Properties
Takumi Aibara, Masayoshi Kamai, Yoshiaki Morisada, Kohsaku Ushioda, Hidetoshi Fujii
pp. 1-14
Abstract
A novel solid-state joining method called Cold Spot Joining (CSJ) has been successfully developed. In this joining concept, the material near the joining interface is plastically deformed under high pressure to form a joining interface, resulting in the fragmentation of oxide films at the joining interface and the formation of strong interface. Medium carbon steel sheets were CS-joined under various process conditions. The joining temperature can be varied by the applied pressure during CSJ. Microstructural observations and hardness distribution indicated that the appropriate pressurization resulted in joining temperatures below the A1 point and suppressed the formation of the brittle martensitic structure. By providing appropriate applied pressure, sound S45C spot-welded joints were successfully produced, showing plug failure of the base metal in both tensile shear and cross-tension tests. Further investigation into the mechanism of interface formation reveals that the oxide film at the interface is fragmented and expelled. At the same time, dynamic recrystallization occurs at the interface and extremely fine new grains with dispersed fine cementite are formed at the interface to achieve the sound joining with sufficient strength.