Tetsu-to-Hagané
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1883-2954
PRINT ISSN: 0021-1575

Tetsu-to-Hagané Vol. 53 (1967), No. 12

  • 随想

    pp. 1379-1380

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
  • Thermodynamics of Liquid Iron Solutions

    pp. 1381-1392

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
  • On the Rate of Absorption of Nitrogen in Liquid Iron and Iron Alloys, Containing Carbon, Silicon, Manganese and Chromium

    pp. 1393-1406

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    The rates of absorption of nitrogen in liquid iron and liquid iron alloys were measured for inductively melted iron under pure nitrogen at 1600°C.
    The experimental data show a linear correlation, which gives the apparent mass transfer coefficient, k′, when the variable, log [(Cs-Co)/(Cs-C)] is plotted vs F·t/V.
    The experimental values of the apparent mass transfer coefficient obtained for lower oxygen melts are as follows:
    k′=34-35×10-3 cm·sec-1 for 0.005-0.006% O
    k′=27-29×10-3cm·sec-1 for 0.008-0.013% O
    At present, it appears that the transfer of nitrogen across the gas/metal interface is controlled by the transport in the metal. Some models of gas absorption in liquid, such as the film theory, the penetration theory and the surface renewal theory, were taken into account to explain the present results.
    The effects of several alloying elements on the absorption rates were also measured. It is to be noted that carbon, chromium and manganese have practically little influence, silicon, however, has somewhat remarkable influence in the lower concentrations. Namely, mass transfer coefficient increases gradually as silicon increases and reaches the limiting value of 5×10-2 cm·sec-1 at about 2% Si. It seems reasonable to consider that silicon reduces oxygen poison effect which is caused by absorption of dissolved oxygen on the metal surface, even in low oxygen level (0.002% O).
    Transfer of nitrogen from gas into liquid iron may also be chemically controlled when the liquid iron contains some surface active agents. The role of surface active agents such as oxygen and sulphur will be discussed in the next paper.
  • Several Phenomena Taking Place in Remaining Molten Steel in Large Killed Steel Ingots during Solidification Process

    pp. 1406-1424

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Several phenomena which take place in remaining molten steel in large killed steel ingots during solidification process have a great influence on those internal guality. Thus, it is essential in making sound steel ingots, to bring light on this problem.
    In this report, floatation of segregated molten steel and settling phenomenon of crystals was studied to which especial importance have been attached among those phenomena.
    The obtained results are as follows:
    i) During the solidification process of steel ingots, the comparatively fast movement of solutes in remaining molten steel is behaved, and the concentration gradient toward the top is formed in it.
    Such a phenomenon cannot be explained unless it is supposed that the segregated molten steel moves with some mass.
    As a mechanism of floatation, various things are thought. According to the result of authors' model experiment; it was shown that the floatation of segregated molten steel is acted even in static steel bath at velocity or the order of 10-2-10-1cm/sec which is able to explain various phenomena taking place in practical steel ingots.
    ii) It is assumed that the inertia flowing of molten steel taking place in pouring process has a great influence on the movement of solutes in remaining molten steel at the beginning of solidification process.
    iii) The theory that natural convection (thermal convection and solute convection) will take place in remaining molten steel during solidification process has been strongly supported. But it is still unknown how far it will mainly act.
    iv) So far the theory (gravity theory and convection one) that crystal particles are formed in remaining molten steel during solidification process, and that they settle down to form the negative segregation zone (settling crystal zone) is strongly supported. However according to the results of authors' experiments, such a conclusion was obtained that this theory has many problems, and it is rather unreasonable to explain various phenomena taking place during solidification process.
    x

    Readers Who Read This Article Also Read

    1. 表面処理・その他 Tetsu-to-Hagané Vol.52(1966), No.11
    2. Kinetic Study of the Decarburization of Liquid Iron Tetsu-to-Hagané Vol.52(1966), No.12
    3. II 連続鋳造の凝固について Tetsu-to-Hagané Vol.56(1970), No.4
  • Theory of Solidification and Segregation

    pp. 1425-1441

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
  • Dislocation Theory of Strength of Iron and Steel

    pp. 1442-1458

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
  • 抄録

    pp. 1459-1463

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

Article Access Ranking

24 Mar. (Last 30 Days)

  1. Dependence of Carbon Concentration and Alloying Elements on the Stability of Iron Carbides ISIJ International Advance Publication
  2. Comprehensive Optimization Control Technology of Rolling Energy and Oil Consumption in Double Cold Rolling ISIJ International Advance Publication
  3. Experiments on Removal of Hydrophilic Fine Particles in Bubbly Flow ISIJ International Vol.59(2019), No.2
  4. Effects of Impurities and Processing Conditions in Al–1%Mn Alloys on the Formation of Thermally Stabilized Substructures MATERIALS TRANSACTIONS Vol.59(2018), No.11
  5. Temperature Field Distribution of a Dissected Blast Furnace ISIJ International Advance Publication
  6. Coating Film Profiles Generated by Fluctuating Location of the Wiping Pressure and Shear Stress ISIJ International Vol.59(2019), No.2
  7. Effect of EAF Slag Temperature and Composition on its Electrical Conductivity ISIJ International Vol.59(2019), No.2
  8. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) Iron Ore Sinter Bonding Phase Formation: Effects of Basicity and Magnesium on Crystallisation during Cooling ISIJ International Vol.59(2019), No.2
  9. Evolution of Blast Furnace Process toward Reductant Flexibility and Carbon Dioxide Mitigation in Steel Works ISIJ International Vol.56(2016), No.10
  10. Structure Based Viscosity Model for Aluminosilicate Slag ISIJ International Advance Publication

Search Phrase Ranking

24 Mar. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. galvanizing
  5. tuyere abrasion
  6. tuyere erosion
  7. tuyere failure
  8. lme
  9. wear on tuyere
  10. 鉄と鋼