Tetsu-to-Hagané
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1883-2954
PRINT ISSN: 0021-1575

Tetsu-to-Hagané Vol. 53 (1967), No. 12

  • 随想

    pp. 1379-1380

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
  • Thermodynamics of Liquid Iron Solutions

    pp. 1381-1392

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
  • On the Rate of Absorption of Nitrogen in Liquid Iron and Iron Alloys, Containing Carbon, Silicon, Manganese and Chromium

    pp. 1393-1406

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    The rates of absorption of nitrogen in liquid iron and liquid iron alloys were measured for inductively melted iron under pure nitrogen at 1600°C.
    The experimental data show a linear correlation, which gives the apparent mass transfer coefficient, k′, when the variable, log [(Cs-Co)/(Cs-C)] is plotted vs F·t/V.
    The experimental values of the apparent mass transfer coefficient obtained for lower oxygen melts are as follows:
    k′=34-35×10-3 cm·sec-1 for 0.005-0.006% O
    k′=27-29×10-3cm·sec-1 for 0.008-0.013% O
    At present, it appears that the transfer of nitrogen across the gas/metal interface is controlled by the transport in the metal. Some models of gas absorption in liquid, such as the film theory, the penetration theory and the surface renewal theory, were taken into account to explain the present results.
    The effects of several alloying elements on the absorption rates were also measured. It is to be noted that carbon, chromium and manganese have practically little influence, silicon, however, has somewhat remarkable influence in the lower concentrations. Namely, mass transfer coefficient increases gradually as silicon increases and reaches the limiting value of 5×10-2 cm·sec-1 at about 2% Si. It seems reasonable to consider that silicon reduces oxygen poison effect which is caused by absorption of dissolved oxygen on the metal surface, even in low oxygen level (0.002% O).
    Transfer of nitrogen from gas into liquid iron may also be chemically controlled when the liquid iron contains some surface active agents. The role of surface active agents such as oxygen and sulphur will be discussed in the next paper.
  • Several Phenomena Taking Place in Remaining Molten Steel in Large Killed Steel Ingots during Solidification Process

    pp. 1406-1424

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Several phenomena which take place in remaining molten steel in large killed steel ingots during solidification process have a great influence on those internal guality. Thus, it is essential in making sound steel ingots, to bring light on this problem.
    In this report, floatation of segregated molten steel and settling phenomenon of crystals was studied to which especial importance have been attached among those phenomena.
    The obtained results are as follows:
    i) During the solidification process of steel ingots, the comparatively fast movement of solutes in remaining molten steel is behaved, and the concentration gradient toward the top is formed in it.
    Such a phenomenon cannot be explained unless it is supposed that the segregated molten steel moves with some mass.
    As a mechanism of floatation, various things are thought. According to the result of authors' model experiment; it was shown that the floatation of segregated molten steel is acted even in static steel bath at velocity or the order of 10-2-10-1cm/sec which is able to explain various phenomena taking place in practical steel ingots.
    ii) It is assumed that the inertia flowing of molten steel taking place in pouring process has a great influence on the movement of solutes in remaining molten steel at the beginning of solidification process.
    iii) The theory that natural convection (thermal convection and solute convection) will take place in remaining molten steel during solidification process has been strongly supported. But it is still unknown how far it will mainly act.
    iv) So far the theory (gravity theory and convection one) that crystal particles are formed in remaining molten steel during solidification process, and that they settle down to form the negative segregation zone (settling crystal zone) is strongly supported. However according to the results of authors' experiments, such a conclusion was obtained that this theory has many problems, and it is rather unreasonable to explain various phenomena taking place during solidification process.
    x

    Readers Who Read This Article Also Read

    1. 表面処理・その他 Tetsu-to-Hagané Vol.52(1966), No.11
    2. Kinetic Study of the Decarburization of Liquid Iron Tetsu-to-Hagané Vol.52(1966), No.12
    3. II 連続鋳造の凝固について Tetsu-to-Hagané Vol.56(1970), No.4
  • Theory of Solidification and Segregation

    pp. 1425-1441

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
  • Dislocation Theory of Strength of Iron and Steel

    pp. 1442-1458

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
  • 抄録

    pp. 1459-1463

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

Article Access Ranking

22 Jan. (Last 30 Days)

  1. A Review of the Chemistry, Structure and Formation Conditions of Silico-Ferrite of Calcium and Aluminum (‘SFCA’) Phases ISIJ International Vol.58(2018), No.12
  2. Hydrogen Embrittlement Susceptibility Evaluation of Tempered Martensitic Steels Showing Different Fracture Surface Morphologies Tetsu-to-Hagané Vol.105(2019), No.1
  3. Heat Transfer Characteristic of Slit Nozzle Impingement on High-temperature Plate Surface ISIJ International Advance Publication
  4. Effects of Impurities and Processing Conditions in Al–1%Mn Alloys on the Formation of Thermally Stabilized Substructures MATERIALS TRANSACTIONS Vol.59(2018), No.11
  5. Preparation of High-Carbon Metallic Briquette for Blast Furnace Application ISIJ International Vol.59(2019), No.1
  6. Fusion Zone Microstructural Evolution of Al-10% Si Coated Hot Stamping Steel during Laser Welding ISIJ International Vol.59(2019), No.1
  7. Effect of Annealing Time on Oxides Phases and Morphology along Oxidized Depth of Fe-3%Si Steel during Decarburization ISIJ International Vol.59(2019), No.1
  8. Recent Progress on Advanced Blast Furnace Mathematical Models Based on Discrete Method ISIJ International Vol.54(2014), No.7
  9. Preface to the Special Topics Entitled “To Solve Problems of Hot Rolling Rolls” Tetsu-to-Hagané Vol.104(2018), No.12
  10. Effects of Sulfur and Titanium Interaction in Molten Pig Iron on Erosion of Carbon Brick ISIJ International Vol.59(2019), No.1

Search Phrase Ranking

22 Jan. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. 鉄と鋼
  5. titanium
  6. induction furnace
  7. laser welder
  8. a
  9. activity feo
  10. argon steel