- TOP
- Zairyo-to-Kankyo
- Vol. 68 (2019), No. 12
Zairyo-to-Kankyo Vol. 68 (2019), No. 12
Backnumber
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Search Phrase Ranking
29 May. (Last 30 Days)
Zairyo-to-Kankyo Vol. 68 (2019), No. 12
Evaluation of Relationship between Corrosion Thickness Reduction and Propagation Mode of AE Wave
Takuya Kurihara, Takuma Kagami, Matsuo Takuma, Taro Kono, Naoto Nakasato
pp. 342-346
DOI:
10.3323/jcorr.68.342Abstract
Corrosion loss evaluation method for steel structure was investigated by acoustic emission (AE) signals with characteristics of Lamb wave. Relationship between wavelet coefficient of S0 mode of Lamb wave AE signals and AE source depth were evaluated. The amplitude of the S0 mode becomes higher as the AE source become closer to the thickness center. Thus, the corrosion depth can be evaluated by the strength ratio of S0 mode and A0 mode of Lamb wave AE signals.
Observation of Pit Initiation and Growth of Stainless Steel under a Chloride Solution Droplet―Effect of S Content on Pit Initiation, Growth and Repassivation―
Azusa Ooi, Yaoki Ise, Eiji Tada, Atsushi Nishikata
pp. 347-354
DOI:
10.3323/jcorr.68.347Abstract
A system that can stop pit growth automatically at any time after the pit initiation under a chloride solution droplet was developed. Using this system, atmospheric pitting corrosion of austenitic stainless steels with various sulfur (S) concentrations was investigated. It was confirmed that initiation site of pitting corrosion was manganese sulfide (MnS) inclusions under the droplets regardless of S concentrations. In addition, the growth behavior of the active dissolution area doesn't also depend on S concentrations. When these specimens were subjected to wet-dry cycle tests, probability of pitting corrosion increases with S concentrations due to increasing initiation site, and there is no clear difference in chloride concentrations for onset of the pitting corrosion. On the other hand, repassivation behavior is strongly depends on S concentrations.
Article Access Ranking
29 May. (Last 30 Days)
-
-
A three dimensional real-time heat transfer model for continuous casting blooms
ISIJ International Advance Publication
-
Heterogeneous Chemical State of Carbon in Fe-C Binary Alloys
Tetsu-to-Hagané Advance Publication
-
Effect of Parallel Granulation with Inclined Mixing of Limestone on Melt and Assimilation Behavior
Tetsu-to-Hagané Vol.109(2023), No.5
-
日本鉄鋼協会第91回講演大会講演大要
Tetsu-to-Hagané Vol.62(1976), No.4
-
Low Density Fe–Mn–Al–C Steels: Phase Structures, Mechanisms and Properties
ISIJ International Vol.61(2021), No.1
-
Effects of Liquidus Temperature and Liquid Amount on the Fluidity of Bonding Phase and Strength of Sinter
ISIJ International Vol.61(2021), No.1
-
Torque Model in Plate Rolling Process with Biting Impact Considered
ISIJ International Vol.61(2021), No.1
-
Optimization and Improvement of the Projection Welding of Nut Based on Regression Analysis
ISIJ International Vol.63(2023), No.4
-
Microwave-hydrogen synergistic reduction of vanadium titano-magnetite
ISIJ International Advance Publication
You can use this feature after you logged into the site.
Please click the button below.