- TOP
- Zairyo-to-Kankyo
- Vol. 68 (2019), No. 12
Zairyo-to-Kankyo Vol. 68 (2019), No. 12
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Zairyo-to-Kankyo Vol. 68 (2019), No. 12
Evaluation of Relationship between Corrosion Thickness Reduction and Propagation Mode of AE Wave
Takuya Kurihara, Takuma Kagami, Matsuo Takuma, Taro Kono, Naoto Nakasato
pp. 342-346
DOI:
10.3323/jcorr.68.342Abstract
Corrosion loss evaluation method for steel structure was investigated by acoustic emission (AE) signals with characteristics of Lamb wave. Relationship between wavelet coefficient of S0 mode of Lamb wave AE signals and AE source depth were evaluated. The amplitude of the S0 mode becomes higher as the AE source become closer to the thickness center. Thus, the corrosion depth can be evaluated by the strength ratio of S0 mode and A0 mode of Lamb wave AE signals.
Observation of Pit Initiation and Growth of Stainless Steel under a Chloride Solution Droplet―Effect of S Content on Pit Initiation, Growth and Repassivation―
Azusa Ooi, Yaoki Ise, Eiji Tada, Atsushi Nishikata
pp. 347-354
DOI:
10.3323/jcorr.68.347Abstract
A system that can stop pit growth automatically at any time after the pit initiation under a chloride solution droplet was developed. Using this system, atmospheric pitting corrosion of austenitic stainless steels with various sulfur (S) concentrations was investigated. It was confirmed that initiation site of pitting corrosion was manganese sulfide (MnS) inclusions under the droplets regardless of S concentrations. In addition, the growth behavior of the active dissolution area doesn't also depend on S concentrations. When these specimens were subjected to wet-dry cycle tests, probability of pitting corrosion increases with S concentrations due to increasing initiation site, and there is no clear difference in chloride concentrations for onset of the pitting corrosion. On the other hand, repassivation behavior is strongly depends on S concentrations.
Article Access Ranking
13 Oct. (Last 30 Days)
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
Growth, Removal, and Agglomeration of Various Type of Oxide Inclusions in Molten Steel
Tetsu-to-Hagané Vol.111(2025), No.11
-
Integrated Steelworks that Reduce CO2 Emissions by More Than 80% ─ Challenge for Carbon-Neutral Integrated Steelworks ─
Tetsu-to-Hagané Vol.111(2025), No.13
-
Capillary Infiltration of Slag in Hydrogen-Direct Reduced Iron and Influence on Melting
ISIJ International Advance Publication
-
Novel application of photoelectron yield spectroscopy to the detection of hydrogen in steel under atmospheric conditions
ISIJ International Advance Publication
-
-
Continuous recrystallization of ferrite matrix manifested by cementite pinning in deformed pearlite
ISIJ International Advance Publication
-
Formation Behavior of Plating Films of Zn−V Composite Electroplated Steel Sheets and its Heat Dissipation Characteristics
ISIJ International Advance Publication
-
Numerical analysis of low-carbon blast furnace operations by coke oven and hydrogen gases injection in COURSE50 experimental blast furnace
ISIJ International Advance Publication
-
Advancements in the development, industrial production, and applications of ultra-high nitrogen low alloy steel
ISIJ International Advance Publication
You can use this feature after you logged into the site.
Please click the button below.