- TOP
- Zairyo-to-Kankyo
- Vol. 64 (2015), No. 1
Zairyo-to-Kankyo Vol. 64 (2015), No. 1
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Keyword Ranking
12 Jul. (Last 30 Days)
Zairyo-to-Kankyo Vol. 64 (2015), No. 1
Effect of Cr and Ni on SCC Susceptibility in Non-sensitized Materials under Simulated BWR Condition
Manabu Kanzaki, Kiyoko Takeda, Yasuhiro Masaki, Takeo Kudo
pp. 8-13
DOI:
10.3323/jcorr.64.8Abstract
The effect of Cr and Ni on Stress Corrosion Cracking (SCC) susceptibility was studied in non-sensitized materials under simulated BWR condition. SCC tests were conducted by creviced 4 bent beam test as static strain method, and Slow Strain Rate Test (SSRT) as dynamic strain method. Cr affected markedly to prevent SCC in both SCC tests. Ni was effective to reduce SCC susceptibility under the dynamic strain test, however, not clear to affect SCC susceptibility under the static strain test. The effect of Cr was discussed for corrosion resistant film by examining strain electrode behavior and corrosion products. With increasing the Cr content in material, the repassivation behavior was improved and Cr concentration in inner side of corrosion product increased. These results suggest that Cr affects to suppress SCC due to improve corrosion resistance by Cr concentrated corrosion film.
Corrosion Rate for Silver Exposed to Indoor Atmosphere
Rintaro Minamitani
pp. 14-19
DOI:
10.3323/jcorr.64.14Abstract
A new mechanism of atmospheric corrosion was proposed for silver in H2S-NO2-SO2-Cl2 environments. Hydrogen sulfide is oxidized by nitrogen dioxide to form reduced sulfur. The chemical reaction for silver was worked out by using the generated reduced sulfur. After the generation reaction of reduced sulfur, the electrochemical reaction was worked out by using the surplus hydrogen sulfide or the nitrogen sulfide. A novel estimation equation of the corrosion rate for silver was proposed as a function of both pollutant concentration and temperature-humidity. By using the equation, the experimental data in published papers was able to be estimated by a factor of two.
Readers Who Read This Article Also Read
Zairyo-to-Kankyo Vol.64(2015), No.5
Zairyo-to-Kankyo Vol.64(2015), No.8
Article Access Ranking
12 Jul. (Last 30 Days)
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
Wettability of CaS Against Molten Iron at 1873 K
ISIJ International Vol.65(2025), No.2
-
Integrated Steelworks that Reduce CO2 Emissions by More Than 80% — Challenge for Carbon-Neutral Integrated Steelworks —
Tetsu-to-Hagané Advance Publication
-
Factors affecting generation of iron fines in cold sheet rolling of steel
ISIJ International Advance Publication
-
Effect of BN surface segregation on coatability in hot-dip galvanizing of B-added steel
ISIJ International Advance Publication
-
Effects of alloying-element addition on hydrogen diffusion and hydrogen absorption in Ni
ISIJ International Advance Publication
-
New Electromagnetic Flow Control System for Optimization of Molten Steel Flow in Continuous Casting Mold
ISIJ International Advance Publication
-
Micromechanical characterization of nano-bainite steel
ISIJ International Advance Publication
-
Experimental Study on Heat Transfer Characteristics of a Moving Single-Nozzle Jet Impingement
ISIJ International Advance Publication
-
Surface Cracking in Hot Rolling Process of Cu Bearing Steel Bar
Tetsu-to-Hagané Vol.111(2025), No.5
You can use this feature after you logged into the site.
Please click the button below.