Zairyo-to-Kankyo
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480

Zairyo-to-Kankyo Vol. 57 (2008), No. 7

  • A Opinion Associated with Hardware Making and Software Making in Japan

    pp. 299-300

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.57.299

  • Hydrogen Embrittlement Associated with Phase Transformation (Appendix : Assessment of the Susceptibility to Hydrogen-related Failure)

    pp. 301-317

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.57.301

    The features and mechanisms of hydrogen embrittlement of metals that undergo hydride formation and martensitic transformation during service are reviewed. Metastable austenitic stainless steels, Nb and V as well as Ti and its alloys are the metals examined. The embrittlement of austenitic stainless steels is susceptible to the stability of austenite, and hydrogen promotes the martensitic transformation forming hydride as a precursor. However, martensite per se is not always the origin of the embrittlement, but.lattice defects associated with dislocation dynamics in the crack front is noted as a factor. In Nb and V, stress-induced hydride formation successively taking place at the crack front supplies a crack path with a reduced resistance for growth. In Ti, the primary role of hydrides is not always the case. In superelastic and shape memory Ni-Ti alloys, the embrittlement appears prominent in the martensitic transformation, and some dynamic process invoking lattice defects is suggested to play a role. In an appendix, the assessment of the susceptibility in terms of the critical hydrogen concentration is critically discussed, and some mechanical response to hydrogen is proposed as new criteria for the susceptibility of materials to hydrogen embrittlement.
  • Multiple Uses High Corrosion Resistant Stainless Steel, NSSC®270

    pp. 322-326

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.57.322

    NSSC270 stainless steel is recognized as one of stainless steels that can be used in very severe corrosion environments and it is standardized as SUS312L in JIS (Japan Industrial standard). In this report, corrosion resistance and application examples of super stainless steel, NSSC270(20%Cr-18%Ni-6%Mo-0.8%Cu-0.2%N) with high corrosion resistance and good weldability are mainly described in food industries, desulfurization plants, inner sheets of stack and marine environments. NSSC270 can be manufactured as variety of shapes such as plates, sheets, tubes, bolts, nuts and flanges et al. and delivered within short time.
  • Quantitative Analysis of Copper Sulfides by Voltammetry Using a Strongly Alkaline Solution

    pp. 327-333

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.57.327

    A new voltammetric method using a strongly alkaline electrolyte (6 M KOH+1 M LiOH) as the supporting electrolyte was applied for simultaneous determination of copper oxides and sulfides. It was found that the reduction peak of Cu2S was well separated from those of copper oxides and appeared at a somewhat higher potential than that of Cu2O. Unlike in the case of the reduction of CuO, CuS was reduced in a stepwise manner. The amounts of Cu2S formed on Cu plates were determined by the LSV method and found to agree well with the values determined by ICP-OES. In the voltammetric measurement of a copper plate in 6 M KOH+1 M LiOH containing S2−, the existence of Cu2S could be confirmed by the emergence of its redox peak pair. The proposed voltammetric method enables the quantitative estimation of a Cu2S film of a few nm thickness formed on Cu. In addition, Cu9S5 could be detected by its reduction peak appearing at a potential slightly higher than Cu2S.

Article Access Ranking

22 May. (Last 30 Days)

  1. Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel ISIJ International Vol.62(2022), No.2
  2. Comparison of Oxidation Behavior of Various Reactive Elements in Alloys during Electroslag Remelting (ESR) Process: An Overview ISIJ International Advance Publication
  3. Interaction Coefficients of Mo, B, Ni, Ti and Nb with Sn in Molten Fe–18mass%Cr Alloy ISIJ International Vol.62(2022), No.3
  4. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of MgO Source on Phase Formation during Heating ISIJ International Vol.62(2022), No.4
  5. Dissolution Kinetics of Synthetic FeCr2O4 in CaO–MgO–Al2O3–SiO2 Slag ISIJ International Vol.62(2022), No.4
  6. Removal of Inclusions using Swirling Flow in a Single-Strand Tundish ISIJ International Advance Publication
  7. Phenomenological Understanding about Melting Temperature of Multi-Component Oxides Tetsu-to-Hagané Vol.108(2022), No.4
  8. Assessment of Blast Furnace Operational Constraints in the Presence of Hydrogen Injection ISIJ International Advance Publication
  9. Influence of Acicular Ferrite Microstructure on Toughness of Ti-Rare Earth Metal (REM)-Zr Killed Steel Tetsu-to-Hagané Vol.108(2022), No.5
  10. Ironmaking Using Municipal Solid Waste (MSW) as Reducing Agent: A Preliminary Investigation on MSW Decomposition and Ore Reduction Behavior ISIJ International Advance Publication

Search Phrase Ranking

22 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. steel
  5. galvannealing
  6. jet impingement
  7. jet impingement + cooling + runout table
  8. nitrogen
  9. refractory
  10. valve spring steel