Zairyo-to-Kankyo
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480

Zairyo-to-Kankyo Vol. 56 (2007), No. 9

  • Miscellaneous Thoughts about Development of Corrosion-prevetive Technology

    pp. 381-381

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.381

  • Mechanism of Hydrogen-related Failure II

    pp. 382-394

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.382

    Following the preceding article, a theory that considers the primary role of strain-induced vacancies in hydrogen-related failure is presented. Detection of lattice defects the creation and agglomeration of which are enhanced by hydrogen is described. As a support of the theory, correlations between the mount of strain-induced vacancies and the susceptibility to hydrogen-related failure are shown with steels of different microstructures. Interaction of fatigue and delayed fracture is shown as another evidence of the theory. The role of hydrogen concentration in the failure is discussed in regard to a time-dependent alteration of defects during delayed fracture test.
    x

    Readers Who Read This Article Also Read

    1. Mechanism of Hydrogen-related Failure I Zairyo-to-Kankyo Vol.56(2007), No.8
    2. Hydrogen Existing States and Hydrogen Embrittlement Zairyo-to-Kankyo Vol.60(2011), No.5
    3. Enhanced Lattice Defect Formation Associated with Hydrogen and Hydrogen Embrittlement under Elastic Stress of a Tempered Martensitic Steel Tetsu-to-Hagané Vol.98(2012), No.5
  • Optimization of the Method for Determining the Corrosion-crevice Repassivation Potential of Ni-Cr-Mo Alloys

    pp. 406-413

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.406

    In order to quantitatively evaluate the resistance of a candidate overpack material for geological disposal of high-level nuclear waste to the crevice corrosion, the optimized test method for determining the corrosion-crevice repassivation potential, ER,CREV, of a Ni-Cr-Mo alloy (Alloy 22) was developed based on that of stainless steels (JIS G 0592). It was found that two restrictions shall be satisfied for determining the valid value of ER,CREV for Alloy 22. Restriction (a) was to avoid transpassive dissolution, and (b) was to obtain a penetration depth of 65 μm or more in creviced areas. The recommended procedure in JIS G 0592 at the corrosion-crevice initiation stage, which involved the potentiodynamic anodic polarization at a scan rate of 30 mV min−1, could not satisfy the restriction (a). Consequently, we adopted the potentiostatic holding at the potential below the critical potential for transpassive dissolution. The recommended procedure in JIS G 0592 at the corrosion-crevice propagation stage, which involved the galvanostatic holding at an applied current of 200 μA for 2 hours, could not always satisfy the restriction (b), and the applied current of 1600 μA or more could not satisfy the restriction (a). Therefore, we adopted the galvanostatic holding at a current of 800 μA for 2 hours. The limits of safety usage of Alloy 22 were evaluated by values of ER,CREV which were measured with the optimized procedure in 0.1 to 4 mol dm−3 sodium chloride solutions at 90ºC.
  • Influence of Al Content of Mg-Al-Zn Alloys on Atmospheric Corrosion

    pp. 414-419

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.414

    An outdoor exposure and a simulated airborne sea salt corrosion test were carried out to investigate the effect of Al content of Mg-Al-Zn alloys on atmospheric corrosion. In both of the corrosion tests, the alloy containing high Al had the superior corrosion resistance. In the outdoor exposure, Al was concentrated in the surface film during the exposure, which has the beneficial effect for suppressing the following corrosion, and the corrosion form was changed from general corrosion to localized one with increasing Al content in the alloys. In the simulated airborne sea salt corrosion test, mass loss of Mg alloys increased with the amount of the deposited salt and relative humidity. From the relationship between the water film thickness and Cl ion concentration, it was also clarified that the corrosion rate of the Mg alloys mainly depended on the water film thickness.
  • The Mechanism of Formation of Calcium Carbonate Scale on Stainless Steel Surface

    pp. 420-426

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.420

    The mechanism of crystal adhesion and growth of calcium carbonate on the stainless steel plate surface from supersaturated solution was investigated at 25.0ºC. The amorphous CaCO3 (ACC) was immediately precipitated in solution from the highly supersaturated solution. Crystal growth of calcite in solution started after 2 minutes of induction period. The crystal growth of vaterite started at 3.5 min. All the ACC has transformed to crystalline polymorphs by about 8 min. The metastable crystals, vaterite, transformed into stable form, calcite, by 7 hours. When the stainless steel plate was inserted in solution prior to ACC precipitation, ACC adhered at first on the plate surface, then it disappeared within a couple of minutes. After that, the calcite crystals nucleated on the surface and grew to large size. When the plate was inserted in solution just after the precipitation of ACC, vaterite crystals were simultaneously formed with the calcite. The vaterite crystals lined straight on the surface. Calcite crystals gradually grew, whereas the vaterite crystals dissolved and finally disappeared. When the plate was inserted after the growth of vaterite in the solution, no calcium carbonate was formed on the metal surface. Etching of the metal surface by acid reduced the formation of calcite. Scratch on the metal surface scarcely accelerated the adhesion of crystals.

Article Access Ranking

16 Apr. (Last 30 Days)

  1. Three-dimensional Investigations of Non-metallic Inclusions in Stainless Steels before and after Machining ISIJ International Advance Publication
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Influence of Ore Assimilation and Pore Formation during Sintering on Reduction Behavior of Sintered Ores Tetsu-to-Hagané Vol.107(2021), No.3
  4. Numerical Simulation of Flow, Heat, Solidification, Solute Transfer and Electromagnetic Field for Vertical Mold and Curved Mold of Billet ISIJ International Vol.61(2021), No.3
  5. Structural and Mechanical Characterizations of Top Dross in a Molten Zinc Bath ISIJ International Vol.61(2021), No.3
  6. Dissolution Behavior of Mg and Ca from Dolomite Refractory into Al-killed Molten Steel ISIJ International Advance Publication
  7. Deformation Behavior of Longitudinal Surface Flaws in Flat Rolling of Steel Wire ISIJ International Advance Publication
  8. Numerical Study into Gravity Separation of Phosphorus from BOS Slag during Solidification ISIJ International Vol.61(2021), No.3
  9. Prediction of Spatial Composition Distribution of Inclusions in the Continuous Casting Bloom of a Bearing Steel under Unsteady Casting ISIJ International Vol.61(2021), No.3
  10. Improvement in Reduction Behavior of Sintered Ores in a Blast Furnace through Injection of Reformed Coke Oven Gas Tetsu-to-Hagané Vol.107(2021), No.4

Search Phrase Ranking

16 Apr. (Last 30 Days)

  1. blast furnace
  2. coke oven gas injection
  3. tetsu-to-hagané
  4. blast furnace productivity
  5. slag
  6. blast furnace permeability
  7. continuous casting of electrical steel
  8. deoxygen in liquid iron
  9. electrical steel and continuous casting
  10. equilibrium of deoxygen in liquid iron