Zairyo-to-Kankyo
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480

Zairyo-to-Kankyo Vol. 52 (2003), No. 8

  • Interactions between the Materials for Radwaste Disposal System and Groundwater under Geological Disposal Conditions

    pp. 386-395

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    The paper describes briefly the performance and alteration of various materials used in the engineered barrier system of radioactive waste disposal and rock as natural barrier due to interactions with the groundwater. Cementitious materials, borosilicate glass, metals like stainless steel and Zircaloy, bentonite clay and rock are focused on among candidate materials of the engineered barrier. Studies on long-term alteration of the materials and its effects on the important parameters defining the performance of the materials are surveyed and reviewed.
  • Corrosion Protection of Steel by Calcareous Electrodeposition in Seawater (Part 2)

    pp. 401-407

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    The mechanism was studied of calcareous deposit growth on steel surfaces cathodically protected in seawater under a constant cathodic current density. The deposits grew in proportion to the electro-deposition time with keeping the Ca/Mg ratio almost constant. A SEM observation revealed that the deposit was composed of double layers with a clear boundary the inside of which was Mg-rich, and the outside Ca-rich. It was found from electrodeposition experiments added with the isotope of calcium, 45Ca, that the particles of CaCO3 and Mg(OH)2 were continuously moving in the deposits during the cathodic protection so as to build the boundary between the Mg(OH)2 and CaCO3 layers. The cause of this particles movement was attempted to explain from a colloid-chemical viewpoint.
  • Proposal of a New Stability Index Taking Account of Corrosion Inhibiting Action of Silica and Derivation of Empirical Equations Containing the New Index for Corrosiveness and Scale Formation of Water

    pp. 408-415

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    A new stability index [an improved stability index (SI′)] has been proposed that introduces corrosion inhibiting ability of silica in a broad range of temperature and pH into the conventional index of the corrosive action and scale formation of water, and new empirical equations [Eqs. 1-3] that characterize water were derived using the new index. The derived SI′ was effective in the range of SI>6. The SI′ was balanced at 0, and then SI′=0 differed from SI=6. In addition, a possibility was found for prediction and inhibition of corrosion of ferrous metals based on the equations by controlling the concentration of silica ([SiO2]).
    y=K0{1-exp(-3.06×10-1SI′)} (1)
    K0=(2.09T+1.872×102)exp{-(-1.08×10-4T+7.62×10-3)[SiO2]} (2)
    SI′=x-7.21{1-1.71×10-1exp(-8.59×10-3[SiO2])} (3)
    [y: corrosion rate (V) (mdd), K0: constant affecting saturation value of corrosion rate (y) (mdd), T: temperature (°C), [SiO2]: silica concentration (mg SiO2/dm3), x: stability index (SI) (-)]
  • Alkali Concentration Mechanism on Cathode Terminal End in Aluminum Electrolytic Capacitor

    pp. 416-420

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Aluminum electrolytic capacitors have the tendency that alkali substance gradually concentrates on the cathode terminal end, regardless of load or unload condition. At the time, if the electrolyte consists of the salt containing strong alkali substance such as quaternary alkyl ammonium, the sealing may be affected in the performance.
    We investigated the mechanism generating the concentration of the alkali substance. As the result, the obvious difference in electrochemical characteristic difference between two electrode materials, aluminum cathode foil and tab, which are used for the cathode terminal end of the capacitors causes this concentration. Basically, the cathode foil and the tab with different spontaneous potentials each other form a galvanic couple. And the alkali substance comes to concentrate around the cathode terminal end, due to the cathodic reaction which occurs on the tab surface with comparatively noble potential. The reason why the two electrode materials having similar aluminum purity show the obvious difference electrochemically is considered due to the high purification of the aluminum foil surface during etching process of foil.
  • Polypyrrole-Polymolybdate Composite Film for the Corrosion Protection of Steels

    pp. 421-427

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Conductive polymer film of polypyrrole (PPy) doped by polymolybdate (PMo) anions was prepared on mild steels by anodic polymerization for corrosion prevention of the steels. The PPy-PMo conductive film prepared exhibits good adherence to the steel substrate. The mass and thickness of the PPy-PMo film linearly increase with electricity during constant current polymerization at 5mA·cm-2. The density of the PPy-PMo polymer film was evaluated to be 2.5g·cm-3 from the ratio of the mass to thickness. A corrosion test in neutral and acidic 3.5wt% NaCl solutions was done for the steels covered by the PPy-PMo film. Corrosion of the steels is suppressed by the films: the corrosion rate in the neutral solution decreases by 1/3 compared with that of the bare steel and the rate in the acidic solution by 1/4. The film was gradually reduced during immersion in the solutions with progress of the corrosion reaction of Fe dissolution to Fe2+, which is accompanied with the dissolution from PMo in the film to MoO42- in the neutral solution, or with pickup of protons and sodium ions in the acidic solution.
  • Analysis of Antimicrobial Activity of the Surface of 1B Family Transition Metal Plates

    pp. 428-435

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    In order to make the clean antimicrobial surface using metals on which bacteria are too hard to cling and multiply, antimicrobial activity against Saccharomyces cerevisiae, Escherichia coli and Staphylococcus aureus placed on the plate surface of copper, silver and gold which belong to 1B family transition metals has been investigated. The results obtained are summarized as follows: The order of antimicrobial activity was copper>silver>>gold. Copper had the excelent antimicrobial activity against E. coli and S. cerevisiae. Silver had a strong antimicrobial activity against E. coli and a weak one against S. aureus. Gold had a scarce antimicrobial activity. The antimicrobial activity of copper ion against E. coli and S. aureus was weakly found but 640ppm copper ion of a large quantity caused the antimicrobial activity against except S. cerevisiae. 10ppm silver ion caused the antimicrobial activity against all bacteria tested. Contact of copper with E. coli produced a little amount of H2O2 which caused the antimicrobial activity as an oxidizing stress. The mechanism of antimicrobial activity of the surface of 1B family transition metal plates was supposed as following. The synergistic effects of both sterilization ability due to H2O2 produced in very short time from contact of bacteria with the surface of copper plate and oxidizing ability due to copper ion dissolved from the surface of copper plate caused the great antimicrobial activity of the surface of copper plate. Since the quantity of both H2O2 produced and silver ion dissolved from the surface of silver plate was a little, the sterilization ability and oxidizing ability due to silver ion were not so strong as copper's. Consequently, the antimicrobial activity of silver became weaker than copper's. H2O2 produced scarcely from the surface of gold plate and gold did not dissolve at all, so that the sterilization ability and the oxidizing ability did not generate.

Article Access Ranking

28 Sep. (Last 30 Days)

  1. Recent Progress of Instrumentation Technology for Process Automation in Steel Industry Tetsu-to-Hagané Vol.106(2020), No.9
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Accuracy Improvement of the XRD-Rietveld Method for the Quantification of Crystalline Phases in Iron Sintered Ores through the Correction of Micro-absorption Effects ISIJ International Advance Publication
  4. Melting Erosion Failure Mechanism of Tuyere in Blast Furnace ISIJ International Advance Publication
  5. Review on the High-Temperature Thermophysical Properties of Continuous Casting Mold Fluxes for Highly Alloyed Steels Tetsu-to-Hagané Advance Publication
  6. Evaluation and Prediction of Blast Furnace Status Based on Big Data Platform of Ironmaking and Data Mining ISIJ International Advance Publication
  7. Potential Influences of Impurities on Properties of Recycled Carbon Steel ISIJ International Advance Publication
  8. Influence of Soil Particle Size, Covering Thickness, and pH on Soil Corrosion of Carbon Steel ISIJ International Advance Publication
  9. Mechanism of Corrosion Protection at Cut Edge of Zn-11%Al-3%Mg-0.2%Si Coated Steel Sheets ISIJ International Vol.60(2020), No.9
  10. Optimization Analysis of Mechanical Performance of Copper Stave with Special-shaped Tubes in the Blast Furnace Bosh ISIJ International Advance Publication

Search Phrase Ranking

28 Sep. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. ultrasonic testing bar small diameter
  5. jeong-sik kim
  6. ultrasonic inclusion
  7. isij international
  8. 柳修介
  9. continuous casting of copper alloys
  10. tetsu