材料と環境 Vol. 68 (2019), No. 12
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
キーワードランキング
21 Feb. (Last 30 Days)
材料と環境 Vol. 68 (2019), No. 12
腐食減肉量とAE波の伝播モードの関連性評価
栗原 卓哉, 鏡 拓真, 松尾 卓摩, 鴻野 太郎, 中里 直人
pp. 342-346
DOI:
10.3323/jcorr.68.342抄録
Corrosion loss evaluation method for steel structure was investigated by acoustic emission (AE) signals with characteristics of Lamb wave. Relationship between wavelet coefficient of S0 mode of Lamb wave AE signals and AE source depth were evaluated. The amplitude of the S0 mode becomes higher as the AE source become closer to the thickness center. Thus, the corrosion depth can be evaluated by the strength ratio of S0 mode and A0 mode of Lamb wave AE signals.
塩化物液滴下におけるステンレス鋼の孔食発生・成長過程の観察―孔食発生・成長・再不働態化におよぼすS含有量の影響―
大井 梓, 伊勢 八起, 多田 英司, 西方 篤
pp. 347-354
DOI:
10.3323/jcorr.68.347抄録
A system that can stop pit growth automatically at any time after the pit initiation under a chloride solution droplet was developed. Using this system, atmospheric pitting corrosion of austenitic stainless steels with various sulfur (S) concentrations was investigated. It was confirmed that initiation site of pitting corrosion was manganese sulfide (MnS) inclusions under the droplets regardless of S concentrations. In addition, the growth behavior of the active dissolution area doesn't also depend on S concentrations. When these specimens were subjected to wet-dry cycle tests, probability of pitting corrosion increases with S concentrations due to increasing initiation site, and there is no clear difference in chloride concentrations for onset of the pitting corrosion. On the other hand, repassivation behavior is strongly depends on S concentrations.
論文アクセスランキング
21 Feb. (Last 30 Days)
-
Wettability of CaS Against Molten Iron at 1873 K
ISIJ International Vol.65(2025), No.2
-
Surface defect detection of continuous casting slabs based on deep learning
ISIJ International 早期公開
-
Structure of Metallic Iron Formed in Iron Ores by CO-H2 Reduction
ISIJ International 早期公開
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
Characterization of the three-dimensional pore structure of coke using the maximal ball method
ISIJ International 早期公開
-
Molecular Dynamics Analysis of the Mg2+ Structure Behavior in SiO2-CaO-Al2O3-MgO Slag System
ISIJ International 早期公開
-
Coating Structure and Corrosion Mechanism of Zn-19%Al-6%Mg Alloy Coating Layer
ISIJ International Vol.65(2025), No.2
-
-
Preface to the Special Issue on "Effects of Cu and Other Tramp Elements on Steel Properties"
ISIJ International Vol.37(1997), No.3
-
この機能はログイン後に利用できます。
下のボタンをクリックしてください。