- TOP
- Zairyo-to-Kankyo
- Vol. 59 (2010), No. 2
Zairyo-to-Kankyo Vol. 59 (2010), No. 2
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Zairyo-to-Kankyo Vol. 59 (2010), No. 2
Corrosion Property of Dezincing-resistant Brass in Fresh Water
Masayuki Itagaki, Nobuyuki Ashie, Hideyasu Honda, Koichi Hagiwara, Yoshiharu Kosaka, Takayasu Kisaragi
pp. 43-49
DOI:
10.3323/jcorr.59.43Abstract
Polarization curves of brass, dezincing-resistant brass and bronze were measured by channel flow double electrode (CFDE), and the electrochemical property of dezincing-resistant brass was investigated. By using CFDE, Cu(I) and Cu(II) ions dissolved from the copper-alloy electrode can be determined simultaneously during the measurement of polarization curve. The anodic polarization curve of brass was divided into two potential regions, namely, selective dissolution of zinc below 0 V vs. SSE (region I) and both dissolutions of copper and zinc above 0 V vs. SSE (region II). In the case of anodic polarization curve of dezincing-resistant brass ranked as type I by JBMA T303 test, the current was small in the region I, and the dissolution ratio of zinc was small in the region II. On the other hand, the corrosion test under the fresh water flow was carried out for brass, dezincing-resistant brass, bronze and SUS316. As the result, the dissolution morphology of dezincing-resistant brass ranked as type I tended to general corrosion even in the case that the brass showed the dezincing corrosion. In addition, the short circuit between the dezincing-resistant brass ranked as type I and SUS316 didn’t show galvanic corrosion since the corrosion potential of the dezincing-resistant brass ranked as type I is closed to that of SUS316 in the present test water.
Article Access Ranking
01 Apr. (Last 30 Days)
-
Wettability of CaS Against Molten Iron at 1873 K
ISIJ International Vol.65(2025), No.2
-
Analysis of Peritectic Solidification of Ag–Sn Alloys by Unidirectional Solidification Experiment
Tetsu-to-Hagané Advance Publication
-
Thermodynamic Calculation of Grain Boundary Composition in Ferritic Steels and Its Application for Controlling the Hall–Petch Coefficient
ISIJ International Advance Publication
-
Hydrogen-induced vacancy formation process in austenitic stainless steel 304
ISIJ International Advance Publication
-
Microstructural Analysis of Reduced Multicomponent Calcium Ferrite Using STEM-EDS and 3DAP
Tetsu-to-Hagané Advance Publication
-
Effects of interface anisotropy on the solidification morphology of zinc alloys and development of data assimilation for their estimation
ISIJ International Advance Publication
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
Chemical State Evolution of Iron Ore Sinter Investigated by Wide-Area Imaging XAFS
ISIJ International Advance Publication
-
PREFACE
MATERIALS TRANSACTIONS Vol.54(2013), No.6
-
Bend Failure Mechanism of Zinc Coated Advanced High Strength Steel
ISIJ International Vol.58(2018), No.8
You can use this feature after you logged into the site.
Please click the button below.