- TOP
- Zairyo-to-Kankyo
- Vol. 59 (2010), No. 2
Zairyo-to-Kankyo Vol. 59 (2010), No. 2
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Keyword Ranking
24 Jan. (Last 30 Days)
Zairyo-to-Kankyo Vol. 59 (2010), No. 2
Corrosion Property of Dezincing-resistant Brass in Fresh Water
Masayuki Itagaki, Nobuyuki Ashie, Hideyasu Honda, Koichi Hagiwara, Yoshiharu Kosaka, Takayasu Kisaragi
pp. 43-49
DOI:
10.3323/jcorr.59.43Abstract
Polarization curves of brass, dezincing-resistant brass and bronze were measured by channel flow double electrode (CFDE), and the electrochemical property of dezincing-resistant brass was investigated. By using CFDE, Cu(I) and Cu(II) ions dissolved from the copper-alloy electrode can be determined simultaneously during the measurement of polarization curve. The anodic polarization curve of brass was divided into two potential regions, namely, selective dissolution of zinc below 0 V vs. SSE (region I) and both dissolutions of copper and zinc above 0 V vs. SSE (region II). In the case of anodic polarization curve of dezincing-resistant brass ranked as type I by JBMA T303 test, the current was small in the region I, and the dissolution ratio of zinc was small in the region II. On the other hand, the corrosion test under the fresh water flow was carried out for brass, dezincing-resistant brass, bronze and SUS316. As the result, the dissolution morphology of dezincing-resistant brass ranked as type I tended to general corrosion even in the case that the brass showed the dezincing corrosion. In addition, the short circuit between the dezincing-resistant brass ranked as type I and SUS316 didn’t show galvanic corrosion since the corrosion potential of the dezincing-resistant brass ranked as type I is closed to that of SUS316 in the present test water.
Article Access Ranking
24 Jan. (Last 30 Days)
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
Delayed Fracture Mechanism of 1700 MPa-Class Quenched and Tempered Bolt under Atmospheric Corrosion Environment
Tetsu-to-Hagané Advance Publication
-
New Electromagnetic Flow Control System for Optimization of Molten Steel Flow in Continuous Casting Mold
Tetsu-to-Hagané Vol.112(2026), No.1
-
Processability and Microstructural Morphology of γ-Fe/Fe2Nb Two-Phase Eutectic Alloy Manufactured by Laser Powder Bed Fusion
Tetsu-to-Hagané Vol.112(2026), No.1
-
Effect of B on Surface Oxidation Behavior and Phosphatability of Si–Mn-added Cold-Rolled Steel Sheets
ISIJ International Vol.66(2026), No.1
-
Morphology Control of Metallic Iron Formed by Hydrogen Reduction of Iron Oxide
ISIJ International Advance Publication
-
Effect of Cu Addition on Mechanical Properties of Tempered Martensitic Steels: Retardation of Fatigue Crack Initiation by Cu Precipitation
ISIJ International Advance Publication
-
Cover
Kou kouzou rombunshuu Vol.32(2025), No.125
-
Connecting the Dots
Zairyo-to-Kankyo Vol.74(2025), No.11
-
Preparation and Application of Cellulose Nanofibers from Local Waste Biomass, Such as Orange Peels Rich in Primary Cell Walls
Journal of the Japan Institute of Energy Vol.104(2025), No.12
You can use this feature after you logged into the site.
Please click the button below.