Search Sites

Zairyo-to-Kankyo Vol. 55 (2006), No. 3

ISIJ International
belloff
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480
Publisher: Japan Society of Corrosion Engineering

Backnumber

  1. Vol. 73 (2024)

  2. Vol. 72 (2023)

  3. Vol. 71 (2022)

  4. Vol. 70 (2021)

  5. Vol. 69 (2020)

  6. Vol. 68 (2019)

  7. Vol. 67 (2018)

  8. Vol. 66 (2017)

  9. Vol. 65 (2016)

  10. Vol. 64 (2015)

  11. Vol. 63 (2014)

  12. Vol. 62 (2013)

  13. Vol. 61 (2012)

  14. Vol. 60 (2011)

  15. Vol. 59 (2010)

  16. Vol. 58 (2009)

  17. Vol. 57 (2008)

  18. Vol. 56 (2007)

  19. Vol. 55 (2006)

  20. Vol. 54 (2005)

  21. Vol. 53 (2004)

  22. Vol. 52 (2003)

  23. Vol. 51 (2002)

  24. Vol. 50 (2001)

  25. Vol. 49 (2000)

  26. Vol. 48 (1999)

  27. Vol. 47 (1998)

  28. Vol. 46 (1997)

  29. Vol. 45 (1996)

  30. Vol. 44 (1995)

  31. Vol. 43 (1994)

  32. Vol. 42 (1993)

  33. Vol. 41 (1992)

  34. Vol. 40 (1991)

Zairyo-to-Kankyo Vol. 55 (2006), No. 3

Expectation for the Development of Corrosion and Corrosion Protection Technology from a Plant Engineer

Kazuo Fujita

pp. 91-91

Bookmark

Share it with SNS

Article Title

Expectation for the Development of Corrosion and Corrosion Protection Technology from a Plant Engineer

Adsorption of Gaseous Hydrogen onto Metal Surface

Michihiko Nagumo

pp. 92-99

Abstract

Adsorption behavior of gaseous hydrogen on metal surface has been briefly reviewed, focusing on fundamentals for hydrogen entry that causes degradation of mechanical properties. The measurements for the adsorbed sites and states by means of thermal desorption spectroscopy and the work function are presented. Studies on the isotherm and adsorption kinetics are also presented. The effects of alloying elements and impurities on hydrogen coverage are summarized as well as the effects of gas components.

Bookmark

Share it with SNS

Article Title

Adsorption of Gaseous Hydrogen onto Metal Surface

Evaluation of Mechanical Properties of Ceramic Coating Materials at 723K

Toki Yoshida, Yoshinori Isomoto, Yoshikazu Yamada, Toyoaki Yasui

pp. 112-118

Abstract

Recently, oxidation and erosion resistant ceramic coating materials have been used for high temperature plant components. Evaluation of physical and mechanical properties is important to select suitable materials and to predict their service duration. Hardness is generally used as an indicator of mechanical properties. Contact pressure is regarded as a representative of the hardness under an indentation process. Therefore, mechanical properties of ceramic coating materials were evaluated from the viewpoint of behaviour of contact pressure obtained from quasi-static and dynamic indentation tests at room temperature. The dynamic indentation tests was also conducted at 723 K. As a result, the contact pressure of the ceramic coating materials depended both on test temperature and coating thickness. The performance of ceramic coating materials used as actual components under erosion by solid particle impact was estimated from the contact pressure behaviour and calculated indentation behaviour of impact particles.

Bookmark

Share it with SNS

Article Title

Evaluation of Mechanical Properties of Ceramic Coating Materials at 723K

Article Access Ranking

21 Nov. (Last 30 Days)

You can use this feature after you logged into the site.
Please click the button below.

Advanced Search

Article Title

Author

Abstract

Journal Title

Year

Please enter the publication date
with Christian era
(4 digits).

Please enter your search criteria.