Zairyo-to-Kankyo
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480

Zairyo-to-Kankyo Vol. 46 (1997), No. 7

  • Non-contact Characterization of the Modified Surface Layer by the Inverse Analysis of Laser Surface Acoustic Waves

    pp. 402-410

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Non-contact characterization of the modified surface layer was attempted by the quantitative analysis of the laser surface acoustic wave (SAW). Velocity and attenuation dispersion of the Rayleigh and Lamb waves were obtained by the novel laser SAW system, and used to estimate the thickness, elastic properties, density (purity) and further the bond quality and structure of the surface film. This paper introduces two laser SAW systems developed, sophisticated signal processing to obtain the velocity dispersion, and application to characterize the electro-plated silver layer, diffusion bonded metallic laminate, vapor deposited ceramic layer and porous silicon.
  • Formation and Structures of Iron Oxides

    pp. 411-417

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    The formation mechanism of ferric oxide hydroxides, α-, β- and γ-FeOOH, is described in view of evolution of colloidal particles in aqueous solutions. The surface characterization of FeOOH particles by IR spectroscopy is cited. Finally, the adsorption interaction of H2O, SO2 and NO with the particles is explained based on their surface structures.
  • Repassivation Potential ER for Crevice Corrosion of Type 304 Stainless Steel/FPM-Crevice in Neutral NaCl/NaF Solutions

    pp. 419-423

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    The effects of fluoride ion on the crevice corrosion for a FPM/metal of a type 304 stainless steel were studied in terms of repassivation potential (ER) measurements in neutral NaCl/NaF mixed solutions at 303K. It was found that the ER values shifted to the noble direction by presence of F-, sufficient concentrations of which promoted uniform dissolution of the nobly polarized stainless steel. There was a good correlation between ER and Vcrev.
  • Corrosion Behavior of Mild Steel in Organic Solutions of One Component and Multicomponent Systems

    pp. 424-435

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    The corrosion behavior of SS 400 (mild steel) was investigated in one component system of pure organic solvents (acetic acid, ethanol, diethylamine and acetone) and multi-component system of organic solutions containing additive agents (water, lithium perchlorate, sulfuric acid and nitric acid) by the corrosion weight loss tests, electrochemical measurements and surface analyses. From these results, the corrosion of mild steel was remarkably promoted by sulfuric acid and nitric acid in organic solutions. The corrosion rate increased in strong basic solvent (ethanol), and decreased in weak basic solvent (acetic acid) by addition of sulfuric acid. The passive state region was observed in wide potential range on anodic polarization curves, and the rest potential existed in passive state region in non-corrosion systems. In a.c. impedance measurements, the charge transfer process was observed in remarkable corrosion systems, and the film resistance of passive state was increased in non-corrosion systems. In surface analysis by XPS, the salt film of acetate on steel surface was observed in acetic acid of corrosion system, while the passive film made up by adsorption of solvent molecules and the oxides was observed in ethanol or acetone of non-corrosion systems.
  • Technique of Evaluating Defects on Materials by an Acoustic Impact Method

    pp. 436-442

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    A technical approach by an acoustic impact method was discussed for non-destructive evaluation of defects on materials. Non-contacted detector is attractive in many areas of non-destructive evaluation, and empirically used in industries. A fast Fourier transform frequency analysis enables to evaluate the vibrational damping of the specimen, and to detect the change in frequency due to a defect such as a crack. The detective frequency is generally audible and depends on ability of auditory sense in many cases. In this paper a frequency spectrum analysis at relatively high frequency has been fundamentally conducted with a square plate of brass and stainless steel specimens. Artificial cracks and holes were put on a given portion of the specimens in order to investigate acoustic response. The change in intensity and frequency of the spectrum caused by a small defect was remarkably appeared in a range of high frequency, and proved the validity of this type of acoustic impact method. A theoretical approach was discussed for the frequency spectrum obtained for the brass specimen.
  • Study on Deterioration of Water Repellency

    pp. 443-448

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Experimental testing of water-repellent materials under water-dipping conditions showed that a coating with less than 60% added polytetrafluoroethylene (PTFE) particles is deteriorated of its water repellency while one with more than 80% added PTFE particles is not. It is probably because of the differences in the surface structures of coatings. And, by controlling the dispersion of PTFE particles in the coating by the addition of perfluoroalkyl oxide, deterioration of coating water repellency is prevented.
  • Oxidation Behavior of TiAl at High Temperature in Ar-20%O2 and in N2-20%O2

    pp. 449-455

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Although TiAl has a great potential as future high temperature materials because of a good strength-to-weight ratio even at high temperature, it is not highly resistive against oxidation at high temperature. The oxidation behavior of Ti-Al intermetallic compounds (Ti-34%Al and Ti-37%Al) has been studied at 1173K and 1273K in Ar-20%O2 and in N2-20%O2 under atmospheric pressure. The microstructures of the specimens were controlled by heat treatment and/or isothermal forging. Mass gain of TiAl by oxidation in Ar-20% O2 was much smaller than that in N2-20%O2 in all cases. XPS analysis also showed the remarkable influence of nitrogen on the structure and composition of oxide layers. Titanium nitride was formed at the interface between oxidized surface and substrate at the initial stage of oxidation under N2-20%O2 atmosphere, resulted in the suppression of the formation of the continuous Al2O3 layer. Therefore, the oxidation of TiAl in N2-20%O2 was accelerated compared with that in Ar-20%O2. A model of the oxide layer growth is proposed to explain the role of nitrogen in the oxidation process.

Article Access Ranking

04 Dec. (Last 30 Days)

  1. Structural and Mechanical Characterizations of Top Dross in a Molten Zinc Bath ISIJ International Advance Publication
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Determination of Facet Plane and Cleavage Fracture Plane of the Top Dross Formed in a Molten Zinc Bath ISIJ International Advance Publication
  4. Effect of Hydrogen Concentration in Reducing Gas on the Changes in Mineral Phases during Reduction of Iron Ore Sinter ISIJ International Advance Publication
  5. Effect of Microstructure at Coating Layer on Fatigue Strength in Hot-Dip Galvanized Steel ISIJ International Vol.60(2020), No.11
  6. Identification of Cracking Issues and Process Improvements through Plant Monitoring and Numerical Modelling of Secondary Cooling during Continuous Casting of HSLA Steels ISIJ International Advance Publication
  7. Contributions of Grain Size and Crystal Orientation to Fatigue Crack Deflection and Branching Behavior in Low Carbon Steel Plates ISIJ International Advance Publication
  8. Crystal Structure Analysis of Top Dross in Molten Zinc Bath by First Principles Calculation and Synchrotron X-ray Diffraction ISIJ International Advance Publication
  9. Volumetric Strain Dependence of Quantum Diffusion of Hydrogen in bcc Iron ISIJ International Advance Publication
  10. Comprehensive Technologies for Iron Ore Sintering with a Bed Height of 1000 mm to Improve Sinter Quality, Enhance Productivity and Reduce Fuel Consumption ISIJ International Vol.60(2020), No.11

Search Phrase Ranking

04 Dec. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. bearing 52100 100cr6 rolling contact fatigue
  5. steel
  6. toshihiro kitamura
  7. dwtt pressed notch
  8. electromagnetic stirring
  9. fatigue crack path prediction in udimet 720 nickel-based alloy single crystals
  10. induction heating