Zairyo-to-Kankyo
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480

Zairyo-to-Kankyo Vol. 59 (2010), No. 7

  • To Be a Corrosionist from a Young Person with Recent Manner

    pp. 243-244

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.59.243

  • A New Role of a Low-Voltage, Ultra-High Resolution FE-SEM for Corrosion Studies (1)

    pp. 245-250

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.59.245

    For successful application of low-voltage, ultra-high resolution FE-SEM in corrosion studies, the use of test specimens with clean, smooth and deformation-free surfaces is of critical importance. Otherwise, subtle surface evolutions associated with early stages of corrosion, proceeding both generally over the matrix surface and locally at and around fine inclusions of various sizes and compositions, will never be disclosed clearly. Here, a new and novel approach for the preparation of sample surfaces of required quality is presented. A key feature is the use of radio-frequency powered Glow Discharge (rf-GD) sputtering for final follow-up treatment of mechanically polished sample surfaces. This utilizes its unique sputtering characteristics where both conductive and non-conductive surfaces are sputtered very stably with Ar+ ions of very low energies, less than 50 eV, and very high current density of ∼100 mA cm−2 ; the very low energies of Ar+ ions ensure that sputtering proceeds without significant formation of altered surface layers, while high current density allows sputtering to proceed at very high rates, typically 1∼10 μm s−1, making sample preparation time extremely short, normally less than 10 s.
  • Galvanic Behavior of Illuminated TiO2-Fe Couple

    pp. 259-264

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.59.259

    The galvanic behavior of an illuminated rutile-type TiO2 and iron couple and the corrosion mass loss of the iron under the formation of this galvanic cell were investigated as a function of the hydrogen ion concentration in the aqueous solution. The rutile-type TiO2 with the form of film was formed by a high-temperature oxidation and then was reduced by a high-temperature hydrogen gas. The rest potential of the TiO2 fell due to the light irradiation. This drop increased with an increase in temperature of hydrogen reduction. The drop of the rest potential with light irradiation for the TiO2 reduced at 1173 K increased with an increase in solution pH in the aqueous solutions of pH higher than 10. In these solutions, as a result, the rest potential of the TiO2 was lower than that of the iron. When the illuminated TiO2 was in contact with the iron in the aqueous solutions of 10∼12 pH, the cathodic current passed for the iron. This current increased with an increase in the solution pH. It was found that this reason was due to that the photo-anodic current for the TiO2 increased with an increase in the solution pH. The corrosion mass loss of the iron under the formation of galvanic cell with the illuminated TiO2 was lower than that of the iron under the formation of galvanic cell with no illuminated TiO2 and that of the no galvanized iron. Further, the corrosion mass loss of the iron under the formation of galvanic cell with the illuminated TiO2 decreased with an increase in the ratio of surface area of the TiO2 to the iron.
  • Fundamental Study on Corrosion of Carbon Steel in High Temperature Water

    pp. 265-271

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.59.265

    Corrosion acceleration mechanisms of carbon steel pipes exposed in boiler water circumstances of power generation and chemical plants are not necessarily clarified, because of complicated degradations with chemical and mechanical actions caused under flow conditions. In order to clear basic corrosion phenomena of carbon steel in the high temperature water, corrosion batch tests using a small container for 24 hours and longer test duration were conducted up to a temperature of 463 K under stagnant and flow (agitated) conditions. Carbon steel specimens were weighed before and after a corrosion test, and after an electric removal treatment of iron oxide formed on test surfaces. The iron mass in oxide film and the dissolved iron mass in the solution were separated from the total corrosion loss of carbon steel. As results, it is found that the dissolution of iron from a carbon steel surface was predominant accompanying with the maximum mass loss of the specimens at temperatures of 373 to 393 K under stagnant and flow conditions. The total corrosion loss was increasing with testing time in spite of a formation of magnetite films on carbon steel surfaces. The flow condition in the case of this study was found to accelerate the dissolution of iron. An initial corrosion mechanism of carbon steel in the high temperature water was proposed according to the test results.

Article Access Ranking

10 Jul. (Last 30 Days)

  1. Production and Technology of Iron and Steel in Japan during 2019 ISIJ International Vol.60(2020), No.6
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Scheduling in Continuous Steelmaking Casting: A Systematic Review ISIJ International Vol.60(2020), No.6
  4. Numerical Simulation of Fluid Flow and Solidification in a Vertical Round Bloom Caster Using a Four-port SEN with Mold and Strand Electromagnetic Stirring ISIJ International Advance Publication
  5. Sinter Pot for Temperature Measurement of the Top Layer during and After the Ignition ISIJ International Advance Publication
  6. Taguchi Orthogonal Test on Granule Properties and Porosity Distribution in Sintering Bed using High-resolution X-ray Computed Tomography ISIJ International Vol.60(2020), No.6
  7. From Iron Ore to Crude Steel: Mass Flows Associated with Lump, Pellet, Sinter and Scrap Iron Inputs ISIJ International Vol.60(2020), No.6
  8. Experimental Evaluation of Texture Change during Grain Growth in Electrical Steel Sheets and Its Prediction by Phase Field Simulation Tetsu-to-Hagané Vol.106(2020), No.7
  9. Deoxidation of Electroslag Remelting (ESR) – A Review ISIJ International Vol.60(2020), No.6
  10. Tension Leveling Using Finite Element Analysis with Different Constitutive Relations ISIJ International Vol.60(2020), No.6

Search Phrase Ranking

10 Jul. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. cao sio2 viscosity
  5. 17-7 ph
  6. cold formed bainitic steel
  7. hole expansion ratio
  8. big data
  9. cao
  10. digitalization