- TOP
- Zairyo-to-Kankyo
- Vol. 69 (2020), No. 1
Zairyo-to-Kankyo Vol. 69 (2020), No. 1
Backnumber
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Keyword Ranking
09 Dec. (Last 30 Days)
Zairyo-to-Kankyo Vol. 69 (2020), No. 1
Analysis on the Growth Mechanism of Corrosion Products of Copper Materials Containing Brass by Voltammetry
Shigeyoshi Nakayama, Aiko Tominaga, Hiroyuki Fujioka, Takenori Notoya, Toshiyuki Osakai
pp. 10-16
DOI:
10.3323/jcorr.69.10Abstract
Corrosion products on the brass surface were characterized by voltammetry with a high alkaline electrolyte solution (6 M KOH+1 M LiOH). In addition to copper oxides (Cu2O and CuO), zinc oxide (ZnO) was also confirmed on corroded brass surfaces. Depending on corrosion conditions, the amounts of the respective oxides formed on brass surfaces were varied. In the corrosion test in which brass is immersed in a NaCl solution (by assuming dezincification corrosion), Cu2O was selectively formed, and then grew significantly in NaCl solution at the concentration of 0.1% or less. However, when the concentration exceeded 1%, the formation of ZnO was newly confirmed. It was suggested that the formation and growth behaviors of the oxides on brass should be affected by the diffusion rate of zinc dependent on the concentration of NaCl solution.
Effect of Deposits on Corrosion of Copper Tubes in a Circulating Cooling Water System
Hidefumi Yamanaka, Tomoyuki Nagai, Hidemasa Nonaka, Hiroaki Tsuchiya, Shinji Fujimoto
pp. 17-25
DOI:
10.3323/jcorr.69.17Abstract
In the present study, possible effect of deposits on the corrosion of copper pipes in concentrated cooling water has been examined. It was considered that during the localized corrosion of copper pipes, the cathodic process took place on the intact sites of carbonaceous films, whereas the anodic process occurred on their defective sites. The deposits covering the defects of carbonaceous films significantly affected the corrosion of copper pipes. In particular, the presence of iron rust strongly enhanced the anodic reaction, resulting in severe corrosion. The enhanced anodic reaction was attributed to the suppressed formation of a protective oxide film most likely due to the lower pH of the areas located beneath the iron rust. It was suggested that the pretreatment to form a protective copper oxide film onto the copper pipe surface inhibited the corrosion process beneath the iron rust deposit.
Article Access Ranking
09 Dec. (Last 30 Days)
-
Visualization of hydrogen and hydrogen-induced defects in tensile-deformed pure iron using hydrogen microprint and tritium autoradiography
ISIJ International Advance Publication
-
Modification of Non-metallic Inclusions in Steel by Calcium Treatment: A Review
ISIJ International Advance Publication
-
Experiment and Conformation of Non-sinusoidal Oscillation Waveform Function for Continuous Casting Mold
ISIJ International Vol.63(2023), No.11
-
Formation and Prevention of Nozzle Clogging during the Continuous Casting of Steels: A Review
ISIJ International Advance Publication
-
Microstructure estimation by combining deep learning and phase transformation model
ISIJ International Advance Publication
-
Experimental and Numerical Study on Tapping of Two Liquids through a Single Tap-Hole
ISIJ International Vol.63(2023), No.11
-
Fundamentally Different Magnetoresistance Mechanisms in Related Co/Pd and Co/Pt Multilayers for Spintronic Applications
MATERIALS TRANSACTIONS Vol.64(2023), No.9
-
First-Principles Calculations of Hydrogen Trapping Energy on Incoherent Interfaces of Aluminum Alloys
MATERIALS TRANSACTIONS Vol.64(2023), No.11
-
-
In-situ Observation of Sintering Interface between Al2O3 Particle / Single Crystalline Al2O3 Plate through Single Crystalline Al2O3 Plate
Tetsu-to-Hagané Vol.109(2023), No.11
You can use this feature after you logged into the site.
Please click the button below.