- TOP
- Zairyo-to-Kankyo
- Vol. 69 (2020), No. 1
Zairyo-to-Kankyo Vol. 69 (2020), No. 1
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Zairyo-to-Kankyo Vol. 69 (2020), No. 1
Analysis on the Growth Mechanism of Corrosion Products of Copper Materials Containing Brass by Voltammetry
Shigeyoshi Nakayama, Aiko Tominaga, Hiroyuki Fujioka, Takenori Notoya, Toshiyuki Osakai
pp. 10-16
DOI:
10.3323/jcorr.69.10Abstract
Corrosion products on the brass surface were characterized by voltammetry with a high alkaline electrolyte solution (6 M KOH+1 M LiOH). In addition to copper oxides (Cu2O and CuO), zinc oxide (ZnO) was also confirmed on corroded brass surfaces. Depending on corrosion conditions, the amounts of the respective oxides formed on brass surfaces were varied. In the corrosion test in which brass is immersed in a NaCl solution (by assuming dezincification corrosion), Cu2O was selectively formed, and then grew significantly in NaCl solution at the concentration of 0.1% or less. However, when the concentration exceeded 1%, the formation of ZnO was newly confirmed. It was suggested that the formation and growth behaviors of the oxides on brass should be affected by the diffusion rate of zinc dependent on the concentration of NaCl solution.
Effect of Deposits on Corrosion of Copper Tubes in a Circulating Cooling Water System
Hidefumi Yamanaka, Tomoyuki Nagai, Hidemasa Nonaka, Hiroaki Tsuchiya, Shinji Fujimoto
pp. 17-25
DOI:
10.3323/jcorr.69.17Abstract
In the present study, possible effect of deposits on the corrosion of copper pipes in concentrated cooling water has been examined. It was considered that during the localized corrosion of copper pipes, the cathodic process took place on the intact sites of carbonaceous films, whereas the anodic process occurred on their defective sites. The deposits covering the defects of carbonaceous films significantly affected the corrosion of copper pipes. In particular, the presence of iron rust strongly enhanced the anodic reaction, resulting in severe corrosion. The enhanced anodic reaction was attributed to the suppressed formation of a protective oxide film most likely due to the lower pH of the areas located beneath the iron rust. It was suggested that the pretreatment to form a protective copper oxide film onto the copper pipe surface inhibited the corrosion process beneath the iron rust deposit.
Article Access Ranking
01 Apr. (Last 30 Days)
-
Wettability of CaS Against Molten Iron at 1873 K
ISIJ International Vol.65(2025), No.2
-
Analysis of Peritectic Solidification of Ag–Sn Alloys by Unidirectional Solidification Experiment
Tetsu-to-Hagané Advance Publication
-
Thermodynamic Calculation of Grain Boundary Composition in Ferritic Steels and Its Application for Controlling the Hall–Petch Coefficient
ISIJ International Advance Publication
-
Hydrogen-induced vacancy formation process in austenitic stainless steel 304
ISIJ International Advance Publication
-
Microstructural Analysis of Reduced Multicomponent Calcium Ferrite Using STEM-EDS and 3DAP
Tetsu-to-Hagané Advance Publication
-
Effects of interface anisotropy on the solidification morphology of zinc alloys and development of data assimilation for their estimation
ISIJ International Advance Publication
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
Chemical State Evolution of Iron Ore Sinter Investigated by Wide-Area Imaging XAFS
ISIJ International Advance Publication
-
PREFACE
MATERIALS TRANSACTIONS Vol.54(2013), No.6
-
Bend Failure Mechanism of Zinc Coated Advanced High Strength Steel
ISIJ International Vol.58(2018), No.8
You can use this feature after you logged into the site.
Please click the button below.