Search Sites

Zairyo-to-Kankyo Vol. 55 (2006), No. 10

ISIJ International
belloff
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480
Publisher: Japan Society of Corrosion Engineering

Backnumber

  1. Vol. 73 (2024)

  2. Vol. 72 (2023)

  3. Vol. 71 (2022)

  4. Vol. 70 (2021)

  5. Vol. 69 (2020)

  6. Vol. 68 (2019)

  7. Vol. 67 (2018)

  8. Vol. 66 (2017)

  9. Vol. 65 (2016)

  10. Vol. 64 (2015)

  11. Vol. 63 (2014)

  12. Vol. 62 (2013)

  13. Vol. 61 (2012)

  14. Vol. 60 (2011)

  15. Vol. 59 (2010)

  16. Vol. 58 (2009)

  17. Vol. 57 (2008)

  18. Vol. 56 (2007)

  19. Vol. 55 (2006)

  20. Vol. 54 (2005)

  21. Vol. 53 (2004)

  22. Vol. 52 (2003)

  23. Vol. 51 (2002)

  24. Vol. 50 (2001)

  25. Vol. 49 (2000)

  26. Vol. 48 (1999)

  27. Vol. 47 (1998)

  28. Vol. 46 (1997)

  29. Vol. 45 (1996)

  30. Vol. 44 (1995)

  31. Vol. 43 (1994)

  32. Vol. 42 (1993)

  33. Vol. 41 (1992)

  34. Vol. 40 (1991)

Zairyo-to-Kankyo Vol. 55 (2006), No. 10

Entry of Hydrogen into Metals from Liquid Phase II

Michihiko Nagumo

pp. 430-440

Abstract

Environmental factors that affect the entry of hydrogen into materials are briefly summarized with respect to electrochemical reactions on electrode. Effects of promoters, particularly of H2S, are reviewed concerned with their mechanism. The effects of localized corrosion, such as crevice corrosion and pitting corrosion, and atmospheric corrosion under wet/dry cycles on hydrogen entry are reviewed. Further, interactions between electrochemical reactions on the surface of electrode and plastic deformation, which appear on polarization during stressing, and vice versa, are noticed as phenomena that suggest some surface effects on internal dislocation dynamics.

Bookmark

Share it with SNS

Article Title

Entry of Hydrogen into Metals from Liquid Phase II

Effect of Alloying Elements on Corrosion Resistance of Carbon Steel in Compressed Bentonite Containing Alkaline Solution

Mitsuru Koike, Takuya Hirotani, Noboru Akao, Nobuyosi Hara, Katsuhisa Sugimoto

pp. 445-451

Abstract

Carbon steels are considered to be the most promising material for an overpack container used for the geological disposal of radioactive wastes. In order to know effective alloying elements that increase the corrosion resistance in the disposal environment, corrosion tests of a commercial carbon steel and several kinds of low alloy steels were performed in compressed bentonite containing a simulated solution of bentonite contact water with chloride at pH 8 to 13. The most effective alloying element in the solutions from pH 8 to 12 was Ni. The second effective one was Al. The addition of Ti, Cr, Si, Cu, or Nb slightly increased the corrosion resistance. The most harmful element that decreased the corrosion resistance was Mo. In the solution with pH 13, all the steels except Mo- and Si-containing steels were passivated and the difference in the effect of alloying elements was very small. An FeCO3 layer was formed on all the steels as a corrosion product in the solutions with pH 8 to 12.

Bookmark

Share it with SNS

Article Title

Effect of Alloying Elements on Corrosion Resistance of Carbon Steel in Compressed Bentonite Containing Alkaline Solution

Measurement of Cathodic Current to the Test Piece Uses Seawater Resistant Stainless Steel to Tidal Zone

Takao Kitagawa, Akihiro Tamada, Hiroyuki Wakana, Souichi Ito, Shukuji Asakura

pp. 452-457

Abstract

The results of exposure test by using the test piece which simulates cathodically protected marine steel structure are reported. The exposure examination used the test piece which applied seawater resistant stainless steel from splash zone to the upper part of submerged zone. The value of cathodic current to submerged zone after five months was almost equal to carbon steel. But, cathodic current to seawater resistant stainless steel near high water level was smaller than the value of carbon steel. And, the cathodic current to the high water level of spring tide was larger than other parts.

Bookmark

Share it with SNS

Article Title

Measurement of Cathodic Current to the Test Piece Uses Seawater Resistant Stainless Steel to Tidal Zone

Chemical Transition of Nitrate Ions Accompanied with Corrosion of Carbon Steel under Alkaline Conditions

Akira Honda, Takashi Kato, Tsuyoshi Tateishi, Tsuyoshi Imakita, Kaoru Masuda, Osamu Kato, Tsutomu Nishimura

pp. 458-465

Abstract

Carbon steel was immersed in an aqueous solution of NaNO3 in a closed system for observing both the chemical interaction between metal and NO3-, and the effect of nitrate on the generation rate of H2 gas. The experimental pH range of the solution was 10.0-13.5 which corresponds to that of pore fluid in cementitious material.
The cathodic current density showed a “Tafel equation type” potential dependency in aqueous solution containing NO3- or NO2-. In spite of the accelerated cathodic reaction due to the existence of nitrate, the corrosion rate of carbon steel was not accelerated in the nitrate solutions. This fact suggests that the system is controlled by the anodic reaction. The nitrate reduction accompanied by the corrosion of carbon steel is considered to be a series reaction such as NO3-→NO2-→NH3.
The nitrate reduction reaction competes with the water reduction reaction (hydrogen evolution reaction) within the anodic controlled condition, therefore nitrate strongly reduces the hydrogen generation rate (1/100-1/500 of the cases without nitrate in 1.0 mol dm-3 NaNO3 cases). The generation rates of NH3 were independent of the concentration of NO3- over the range of 1.0×10-3∼1.0 mol dm-3.

Bookmark

Share it with SNS

Article Title

Chemical Transition of Nitrate Ions Accompanied with Corrosion of Carbon Steel under Alkaline Conditions

You can use this feature after you logged into the site.
Please click the button below.

Advanced Search

Article Title

Author

Abstract

Journal Title

Year

Please enter the publication date
with Christian era
(4 digits).

Please enter your search criteria.