- TOP
- Zairyo-to-Kankyo
- Vol. 72 (2023), No. 7
Zairyo-to-Kankyo Vol. 72 (2023), No. 7
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Zairyo-to-Kankyo Vol. 72 (2023), No. 7
Evaluation of Influence Factors for Galvanic Corrosion Coupled between Carbon Fiber Cloth and Carbon Steel
Muye Yang, Shigenobu Kainuma, Wenxuan Niu, Jiajing Xie
pp. 202-211
DOI:
10.3323/jcorr.72.202Abstract
Carbon fiber-reinforced plastic (CFRP)-strengthened steel structures are susceptible to galvanic corrosion, especially in high-humidity and marine environments. This study evaluated the key factors influencing galvanic corrosion coupled between carbon fiber and common steel. These factors include the specific electrochemical properties of unidirectional carbon fiber (CF) materials, contact mode between dissimilar materials, and environmental temperature. The results reveal that the carbon filaments and tows were considered physically homogeneous resistors in the fiber direction. However, the surface resistance drops significantly when the CF cloth is in flat contact with a rough conductive metal surface because of the optimized conductive path and enhanced electric contact area. Moreover, based on the Arrhenius equation, this study has developed a simplified model to explain the acceleration effect of temperature on CF-steel galvanic corrosion. It was found that galvanic corrosion is more sensitive to temperature changes than the corrosion of common steel.
Article Access Ranking
01 Apr. (Last 30 Days)
-
Wettability of CaS Against Molten Iron at 1873 K
ISIJ International Vol.65(2025), No.2
-
Analysis of Peritectic Solidification of Ag–Sn Alloys by Unidirectional Solidification Experiment
Tetsu-to-Hagané Advance Publication
-
Thermodynamic Calculation of Grain Boundary Composition in Ferritic Steels and Its Application for Controlling the Hall–Petch Coefficient
ISIJ International Advance Publication
-
Hydrogen-induced vacancy formation process in austenitic stainless steel 304
ISIJ International Advance Publication
-
Microstructural Analysis of Reduced Multicomponent Calcium Ferrite Using STEM-EDS and 3DAP
Tetsu-to-Hagané Advance Publication
-
Effects of interface anisotropy on the solidification morphology of zinc alloys and development of data assimilation for their estimation
ISIJ International Advance Publication
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
Chemical State Evolution of Iron Ore Sinter Investigated by Wide-Area Imaging XAFS
ISIJ International Advance Publication
-
PREFACE
MATERIALS TRANSACTIONS Vol.54(2013), No.6
-
Bend Failure Mechanism of Zinc Coated Advanced High Strength Steel
ISIJ International Vol.58(2018), No.8
You can use this feature after you logged into the site.
Please click the button below.