Zairyo-to-Kankyo
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480

Zairyo-to-Kankyo Vol. 56 (2007), No. 11

  • Corrosion Prevention Technology Considering Environmental Factors

    pp. 495-496

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.495

  • Stresses Generated at the Metal / Solution Interfaces

    pp. 497-504

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.497

    Surface stress and surface tension are important parameters for surface energetics of metal electrode. At first, the difference and relation between surface stress and surface tension were explained briefly and then, the bending beam method (BBM) was introduced as a powerful tool for measurement of the changes in surface stress of metal electrode in aqueous solution.
    The results of changes in surface stress obtained by BBM for the Pt and Au electrode surfaces oriented mainly to the (111) plane were exampled and discussed from the viewpoint of surface energetics. The surface stress of the Pt (111) electrode changed to the compressive direction during OH adsorption prior to the formation of PtOH monolayer. Particularly, the derivative of surface stress with electrode potential took a maximum, which was explained by the increase in compressive surface elastic strain due to strong bond of adsorbed OH with substrate Pt atom, inducing the surface charge density resulted in the major contribution to the maximum. The similar behavior of the change in surface stress for the Au (111) electrode in aqueous solution containing iodide ions was observed during iodine adsorption prior to the formation of AuI monolayer and was explained by the same manner as those of the Pt electrode.
    Moreover, the two dimensional isothermal compressibility of the iodine adlayer or the underpotentially deposited Pb monolayer on Au (111) electrode was evaluated by connecting the changes in compressive surface stress with the changes in the nearest neighbor distance between adatoms obtained from surface X-ray scattering.
  • Life Cycle Management of Port Structures-III

    pp. 505-508

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.505

    Whole life costing (WLC) is probably the best tool available, provided that the input is sensible and the output tempered with engineering judgment. However, in general, there appeared to be a lack of information about the cost of maintenance and shutdown activities. Therefore, it is necessary to obtain data of the type needed to allow the application of WLC.
    In the present worth method, costs are discounted to the present point in time at a reasonable rate of return that is generally the discount rate. WLC of a port structure concerns the costs of construction, maintenance, shutdown and demolition. The cost of shutdown can be many times higher than the engineering costs of maintenance work. The discount rate and the cost of shutdown are dominant factors in the economic appraisal of port structures.
    In this paper, in accordance with the PIANC WG31 report, data for WLC, the discount rate, and the costs of shutdown and maintenance are considered, and an example of life cycle management (LCM) in the port of Kamsar (Guinea) is shown.
  • The Relationship Between CO2 Corrosion Resistance and Corrosion Products Structure on Carbon and Low Cr Bearing Steels

    pp. 514-520

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.514

    In order to clarify the effect of microstructure on CO2 corrosion resistance of carbon and low Cr steels (Cr content of 1 to 5 mass %), immersion tests were carried out in CO2 environment at 60 or 80°C by using carbon and low Cr steels with different microstructures. The relationship among corrosion behavior, microstructure and corrosion products structure were investigated. For carbon steel, ferritic pearlitic microstructure had better localized corrosion resistance than martensitic microstructure, because lamellar Fe3C improved denseness and adhesion of the primary corrosion product. On the other hand, for low Cr steel, martensitic microstructure had better CO2 corrosion resistance than ferritic pearlitic microstructure. From the result, the primary corrosion product with good corrosion resistance is considered to be formed on homogeneous microstructure for low Cr steel. Weight loss of the martensitic steels with more than 3%Cr was as low as one forth of carbon steel with ferritic pearlitic microstructure. The primary corrosion product formed on 3%Cr martensitic steel had dark and light gray phases. It is considered that the dark gray phase with higher Cr enrichment content acts as corrosion protective film mainly. CO2 corrosion resistance of 3%Cr martensitic steel was not affected by C content and tempering temperature because Cr enrichment content in the dark gray phase was high enough (more than 10 times of Cr content in mother metal).
    x

    Readers Who Read This Article Also Read

    1. How to Enjoy Research Life Zairyo-to-Kankyo Vol.55(2006), No.5
    2. Importance of Corrosion Prevention Technologies to Material Circulation Society Zairyo-to-Kankyo Vol.55(2006), No.4
    3. Number of Contribution Paper Critically Decreases Zairyo-to-Kankyo Vol.57(2008), No.6
  • Passivation Behavior of Carbon Steel in Aqueous Carbonate Solutions

    pp. 521-528

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3323/jcorr.56.521

    The passivation behavior of SM400B carbon steel was investigated in 0.1 mol dm−3 carbonate solutions. The existence of carbonate in the solution reduced the critical current density for passivation, icrit, by virtually an order of magnitude in the pH range of 7.5 to 10.0 at 298 K. The critical potentials for passivation at the reduced icrit were within the potential-pH range where FeCO3 is thermodynamically stable. These results showed that carbonate accelerated the passivation tendency. Depassivation pH in the carbonate solution was determined to be 7.5 at 298 K by comparison between icrit and the diffusion-limiting current density for dissolved oxygen of 8.14 ppm. The depassivation pH is considerably lower than that of 9.3 in a solution that does not contain carbonate. The passivation tendency was enhanced with increasing temperature from 298 K to 363 K. The free corrosion potential, Ecorr, of polished specimens in the aerated carbonate solution at 298 K stayed in an active dissolution potential range in the early stages after immersion. They were, however, suddenly ennobled to the passive region after a long incubation time at pH≥8.0. The time dependency of Ecorr could be described from the viewpoint of electrochemical kinetics.

Article Access Ranking

11 Aug. (Last 30 Days)

  1. An Evaluation Method for Hydrogen Embrittlement of High Strength Steel Sheets Using U-bend Specimens ISIJ International Advance Publication
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Influence of Atmosphere and Basicity on Softening and Melting Behaviors of the CaO–FeO–SiO2–Al2O3–MgO System ISIJ International Vol.60(2020), No.7
  4. Preface to the Special Issue on “Recent Approaches to Control of Cohesive Zone Phenomena and Improvement of Permeability in Blast Furnace” ISIJ International Vol.60(2020), No.7
  5. Method for Evaluating Hydrogen Embrittlement of High-Strength Steel Sheets Considering Press Formation and Hydrogen Existence State in Steel ISIJ International Advance Publication
  6. Numerical Simulation of Coexisting Solid-liquid Slag Trickle Flow in a Coke Bed by the SPH Method with a Non-Newtonian Fluid Model ISIJ International Vol.60(2020), No.7
  7. Effect of Pre-reduction Degree on Softening Behavior of Simulant Sinter Iron Ore ISIJ International Vol.60(2020), No.7
  8. Prediction of Softening Behavior of Simulant Sinter Ore by ADEM-SPH Model ISIJ International Vol.60(2020), No.7
  9. Pressure-drop Modelling in the Softening and Melting Test for Ferrous Burden ISIJ International Vol.60(2020), No.7
  10. Numerical Simulation on Phenomena of Fine Particles Passing through an Orifice under Gas Flow Condition ISIJ International Vol.60(2020), No.7

Search Phrase Ranking

11 Aug. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. blockage orifice
  5. skew rolling plate
  6. trip steel
  7. 780mpa
  8. hole expansion ratio
  9. intensive cooling in continuous casting
  10. suehiro masayoshi