Zairyo-to-Kankyo
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480

Zairyo-to-Kankyo Vol. 47 (1998), No. 10

  • Theoretical Equation of the Critical Impact Velocity in Solid Particles Impact Erosion

    pp. 631-637

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    In the previous paper, the critical impact velocity in the erosion of metallic materials by solid particles impact was experimentally determined. In this paper, the critical impact velocity was theoretically derived through analyzing the behavior of the material surface impacted by a spherical solid particle: at the moment of oblique impact, an indentation is formed; at the same time, the material is strained tangentially to the surface in the direction of particle movement. As the extent of strain goes over the elastic limit, the impacted solid particle does skid on the surface, which brings about wear to the surface by cutting. The threshold strain was derived as a function of the impact velocity, the rotating velocities as well as the duration of particle surface contact. Those parameters which characterized the impact behavior were derived from the coefficient of friction and the rebounding coefficient, all of which were obtained from the mechanical properties of the target material and particle, and other factors concerning the particle. Consequently, the theoretical value of the critical impact velocity was given solely as a function of the mechanical properties of the target and the particle. The calculated critical impact velocity attained the lowest value at a low impact angle, and a good correlation was found between the critical velocity determined by experiment and that predicted by the theoretical equation.
  • Effects of Environmental Factor on Gas Evolution Behavior from Al in Simulating Mortar Environments

    pp. 638-644

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Dry Low-Level Radioactive Wastes (LLW) which mean incombustible solid LLW generated from nuclear power stations are scheduled to be packed in steel drums followed by solidification with mortar. The solidified dry LLW is then to be disposed to shallow underground at Rokkasho LLW Disposal Center. Dry LLW includes some amphoteric metals among which aluminum is the most corrosive with gas evolution in high alkaline media such as mortar. The evolved gas may accelerate the leaching of solidified dry LLW with mortar. Despite the planned removal of aluminum from dry LLW, small inclusion of aluminum is unavoidable. The present study focuses on the effect of environmental factors such as pH and temperature on gas evolution behavior caused by aluminum corrosion. Large effects of pH and temperature on corrosion rate of aluminum and gas evolution were recognized. Principal corrosion product of aluminum was calcium aluminate compound when it was immersed in simulated mortar environments. It is demonstrated that 1.5mol hydrogen gas evolves with the corrosion of 1mol aluminum in environments of 12<pH<13 at temperatures below 60°C.
  • Study on Evaluation Method for Decarburization of 2 1/4 Cr-1Mo Steel in High Temperature Sodium

    pp. 645-650

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Creep strength of 2 1/4 Cr-1Mo Steel used for steam generator tube of a fast breeder reactor is decreased by decarburization in high temperature sodium utilized for coolant of the reactor. However, proposed evaluation methods for carbon decrease in the steel were not sufficient in the predictability. Then, an evaluation method taking account of the behavior of carbide in the steel was studied in this report. The following results were obtained.
    (1) Model of the evaluation method for decarburization of 2 1/4 Cr-1Mo steel was set from decarburization test results in 500 to 700°C of sodium temperature, and the method was developed.
    (2) Decomposition rate of carbide in the steel to fit test results was calcu lated with the method.
    (3) It was clarified that carbon concentration calculated with the method was decreased rapidly at initial stage of decarburization for diffusion of solution carbon, and at next stage the carbon concentration was decreased slowly under influence of decomposition rate for carbide to be dominant rate determining step of decarburization.
    (4) This method presented the most smallest decarburization rate compared with proposed evaluation methods. And the method presented slight decrease of concentration for steam generator tube for 32 years at 500°C whose thickness was 0.3cm.
  • Corrosivity of Indoor Atmosphere for a Prefabricated House

    pp. 651-660

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    An atomospheric exposure test has been conducted since Sept. 26, 1994 at a five member family steel framed prefabricated house in Nogi-chou, Shimotuga-gun, Tochigi prefecture. The ACM (Atmospheric Corrosion Monitor) corrosion sensors and zinc-coated steel coupons are exposed in nine indoor sites-ceilings, floors and wall cavities-and one outdoor site sheltered from rain. Three year of measured results are reported here. The ACM sensor outputs galvanic current, I, between carbon steel and silver, integral of which over a day -daily average electricity, Q- is related to corrosion rates of carbon steel and zinc to be used as a measure of corrosivity for each site. The sensor output, I, is found to depend not only on relative humidity, RH, but also on amount of deposits on the sensor, which, expressed as equivalent amount of deposited sea salt, Ws, is determined by referencing to I vs. RH relationship observed under various predetermined amounts of deposited sea salt in laboratory test. Corrosion rates of carbon steel and zinc at their indoor sites are around one fifth of the outdoor one. Such lower corrosion rates at the indoor sites are attributed mainly to lower Ws values which are around one tenth of the outdoor one. Moreover, amount of sulfur trioxide collected for a year is 0.001mg SO3/100cm2/day at an indoors site, one twenty sixth of the outdoor one.
  • Corrosion Behavior of Aluminum Alloy in Sodium Chloride Solution at Low Temperature

    pp. 661-667

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    A heat exchanger for vaporizing liquefied natural gas (LNG) is made of aluminum alloy tubes, and the way of protecting the tubes from corrosion in sea-water is to form a sacrificial anode layer by thermal-spray coating of Al-Zn alloy on aluminum alloy tubes. However, corrosion damage has been sometimes found in the lower part of heat exchangers exposed to low temperature of freezing sea-water. The purpose of this study is to investigate the corrosion behavior of A3003 aluminum alloy in freezing sodium chloride solution and to examine a possibility of electrochemical impedance spectroscopy for monitoring of the corrosion process of heat exchanger. The aluminum alloy corrodes at 253K in freezing sodium chloride solution. The characteristic of polarization was a cathodic control at this temperature. The corrosion rate obtained by the measurement of electrochemical impedance spectroscopy didn't change with immersion time, corresponding with the corrosion rate obtained by the weight loss method. It was found that this technique is a convenient tool for monitoring of the corrosion processes of heat exchanger in freezing sea-water.

Article Access Ranking

18 Jan. (Last 30 Days)

  1. A Review of the Chemistry, Structure and Formation Conditions of Silico-Ferrite of Calcium and Aluminum (‘SFCA’) Phases ISIJ International Vol.58(2018), No.12
  2. Improving Blast Furnace Raceway Blockage Detection. Part 1: Classification of Blockage Events and Processing Framework ISIJ International Advance Publication
  3. Phase Transformation Behavior of Oxide Scale on Plain Carbon Steel Containing 0.4 wt.% Cr during Continuous Cooling ISIJ International Vol.58(2018), No.12
  4. Hydrogen Embrittlement Susceptibility Evaluation of Tempered Martensitic Steels Showing Different Fracture Surface Morphologies Tetsu-to-Hagané Vol.105(2019), No.1
  5. Gasification and Migration of Phosphorus from High-phosphorus Iron Ore during Carbothermal Reduction ISIJ International Vol.58(2018), No.12
  6. Effect of Coke Size on Reducing Agent Ratio (RAR) in Blast Furnace ISIJ International Vol.58(2018), No.12
  7. Improvement of Sinter Productivity by Control of Magnetite Ore Segregation in Sintering Bed ISIJ International Vol.58(2018), No.12
  8. Heat Transfer Characteristic of Slit Nozzle Impingement on High-temperature Plate Surface ISIJ International Advance Publication
  9. High Temperature Thermal Diffusivity Measurement for FeO Scale by Electrical-Optical Hybrid Pulse-Heating Method ISIJ International Vol.58(2018), No.12
  10. Effect of TiO2 and MnO on Viscosity of Blast Furnace Slag and Thermodynamic Analysis ISIJ International Vol.58(2018), No.12

Search Phrase Ranking

18 Jan. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. 鉄と鋼
  5. laser welder
  6. titanium
  7. activity feo
  8. argon steel
  9. continous annealing
  10. eaf operation