Zairyo-to-Kankyo
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1881-9664
PRINT ISSN: 0917-0480

Zairyo-to-Kankyo Vol. 46 (1997), No. 1

  • High Temperature Corrosion of Boiler Tubes in Municipal Solid Waste Incinerators

    pp. 3-7

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Corrosion problems and solutions in waste-fired superheater tube materials are described and their corrosion mechanism is discussed in terms of molton salt corrosion, especially the difference in their corrosion behaviors among existing boilers.
  • Effect of Physical Properties of Molten Deposits on High Temperature Corrosion of Alloys in Waste Incineration Environment

    pp. 8-15

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    The effect of the physical properties of boiler tube deposits on high-temperature corrosion of heat-resistant alloys was quantitatively examined to clarify the corrosion mechanism and to establish the most appropriate laboratory test method for waste incineration environment. Laboratory corrosion tests were conducted in a simulated incinerator gas on 4 alloys. A crucible method was compared with a coating method at 550°C with use of synthetic deposits composed of NaCl/KCl/Na2SO4=1/1/1 mole containing various amounts of alumina, which was aimed at controlling molten phase content in the deposit (MPC). The tests were conducted also with deposits from two working plants. These deposits were found to be low in MPC. In the crucible method, a bell-shaped change of corrosion mass loss was observed for all the alloys. The change is thought to be due to a competitive effect of increase in MPC. The increase in MPC accelerates and depresses the corrosion because the molten phase is aggressive but hinders gas-permeation. In the coating method, a bell-shaped change was observed only in limited cases, likely because the deposit layer is so thin that it does not hinder gas permeation at any MPC. The crucible method is thought to be more appropriate for such a low MPC environment as is seen in waste incinerator, because it is more aggressive and less disturbed by changes in the condition of deposit during test.
  • Influence of Ash Composition of Boiler Tube Deposits on Corrosion of Materials

    pp. 16-23

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Laboratory corrosion tests were performed for investigating influence of ash composition on corrosion behavior of four candidate materials for the superheater of waste incineration plants. The synthetic ashes and deposits on actual boiler tubes were used in the tests. It was found that the corrosivity of the ash depended not only on the contents of metal oxides, like PbO and CuO, but also on the content of alkaline metal chlorides. Because Alloy 625 showed an excellent corrosion resistance in a molten chloride, alloying with Ni seemed to enhance corrosion reisistivity against the chloride melt. On the other hand, in a mixture of molten chloride and sulfate, the metal loss of Alloy 625 was almost equal with that of SUS 310 S and SUS 347 H. From this result, alloying with Cr seemed to relatively improve corrosion resistance in the mixture melt.
  • Effect of Alloying Elements on Corrosion Resistance of High Alloy Steel in Simulated Environment of Waste Incinerator

    pp. 24-29

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    In order to study the effects of alloying elements on corrosion resistance of high alloy steels in a simulated environment of waste incinerator, laboratory corrosion tests were performed on high alloy steels with various contents of Cr and Mo. It was found that the rate of general corrosion decreased with the increase of the Cr+Mo content and the rate of maximum penetration, which was the sum of intergranular penetration rate and general corrosion rate, decreased with the increase of the Mo content in this condition. The type of corrosion shifted from the intergranular penetration to the general corrosion over 5 mass%Mo. It was assumed that Mo in the alloys acted to restrict the sulfidation of Ni and to accelerate the formation of the protective Cr2O3 layer.
  • Intergranular Brittle Fracture of SUS 304 Stainless Steel with Residual Tensile Stress During the Molten Chloride Attack

    pp. 30-36

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up
    Fracture dynamics of the molten chloride attack of SUS 304 steel with residual tensile stresses was studied using two types of displacement-sensitive heat resistant sensors. AE source simulation of dissipative elastic wave revealed that the Mode-I and -II brittle fractures were associated with the molten chloride attack at 873K. Emission rate of AE signals due to the Mode-I fracture reached the maximum after 15ks exposure and then gradually decreased, while the increase in the AE due to the Mode-II fracture slightly continued until the later period. The fall-off of grains, typical attack morphology by the residual surface tensile stresses, was estimated to be brought by the Mode-I fracture along the grain boundaries perpendicular to the free surface, followed by the mode-II fracture along the boundaries parallel to the surface.
  • Proper Selection of the Thermal Resistant Materials for Sludge Drying and Incinerating Furnace

    pp. 37-38

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

Article Access Ranking

25 Feb. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. Recovery of Phosphorus from Modified Steelmaking Slag with High P2O5 Content via Leaching and Precipitation Tetsu-to-Hagané Vol.107(2021), No.2
  3. Time-resolved and in-situ Observation of Semisolid Deformation in Al–Cu Alloys with Equiaxed and Columnar Grain Structures by Using a Combination Technique of 4D-CT and 3DXRD ISIJ International Advance Publication
  4. Review on the High-Temperature Thermophysical Properties of Continuous Casting Mold Fluxes for Highly Alloyed Steels Tetsu-to-Hagané Vol.107(2021), No.1
  5. Effect of Varied Oxygen Levels on the Oxidation of a Magnetite Pellet Bed during Pot Furnace Induration ISIJ International Advance Publication
  6. Iron Ore Sintering in Milli-Pot: Comparison to Pilot Scale and Identification of Maximum Resistance to Air Flow ISIJ International Advance Publication
  7. Improvement of Bragg-edge Neutron Transmission Imaging for Evaluating the Crystalline Phase Volume Fraction in Steel Composed of Ferrite and Austenite ISIJ International Advance Publication
  8. Influence of Initial Crystal Orientation and Carbon Content on Rolling Texture in 3 mass % Si steel Tetsu-to-Hagané Advance Publication
  9. Effects of Iron Ores on the Combustion Behavior of Coke and NOx Emission during Sintering Process ISIJ International Advance Publication
  10. Deformation-induced Martensite Transformation Behavior during Tensile and Compressive Deformation in Low-alloy TRIP Steel Sheets ISIJ International Vol.61(2021), No.2

Search Phrase Ranking

25 Feb. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. lme rsw
  4. 西山記念技術講座
  5. a practical approach to enhance wear resistance of bearings in molten zinc
  6. blast furnace coal tar injection
  7. blast furnace productivity
  8. lme
  9. sinter pot for temperature measurement of the top layer during and after the ignition
  10. spa-h