- TOP
- Zairyo-to-Kankyo
- Vol. 61 (2012), No. 6
Zairyo-to-Kankyo Vol. 61 (2012), No. 6
Backnumber
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Keyword Ranking
21 Jan. (Last 30 Days)
Zairyo-to-Kankyo Vol. 61 (2012), No. 6
Hydrogen Absorption Behavior of Steel Bar for Prestressed Concrete in a Solution of Ammonium Thiocyanate
Tomoki Doshida, Kenichi Takai, Mikiyuki Ichiba
pp. 249-256
DOI:
10.3323/jcorr.61.249Abstract
A solution of ammonium thiocyanate is used in the FIP (Fédération International de la Précontrainte) test as a hydrogen charging method. Though this method is comparatively simple, fracture time in the FIP test and hydrogen content often differ among various testing institutes. However, the detailed hydrogen absorption behavior in the solution is still not clear. In this context, the effects of existing states of hydrogen, oxide film on the specimen surface, specific solution volume to specimen surface area, immersion time and solution temperature on the hydrogen absorption behavior of a steel bar for reinforcing prestressed concrete were investigated by immersing it in the solution. The amount of absorbed hydrogen increased with immersion time, reached its maximum, and then decreased with increasing immersion time. A main factor of the decrease in the amount of absorbed hydrogen was corrosion products, including Fe, O and S, formed on the specimen surface, since the amount of absorbed hydrogen increased again as a result of merely polishing the surface. This indicates that corrosion products formed on immersing specimens in a solution of ammonium thiocyanate strongly affect hydrogen absorption behavior. Whereas, variation of the solution, such as increase in pH, during immersion also affects slightly hydrogen absorption behavior.
Readers Who Read This Article Also Read
Tetsu-to-Hagané Vol.98(2012), No.5
Article Access Ranking
21 Jan. (Last 30 Days)
-
Wettability of CaS against molten iron at 1873 K
ISIJ International Advance Publication
-
Coating Structure and Corrosion Mechanism of Zn-19%Al-6%Mg Alloy Coating Layer
ISIJ International Advance Publication
-
-
Settling of Particle in Foaming Slag
ISIJ International Vol.64(2024), No.15
-
Evaluation of Activity Coefficients of Oxygen and Nitrogen in Molten Alloy and Its Dominant Factors Based on Solvation Shell Model
Tetsu-to-Hagané Advance Publication
-
Effect of Cooling Rate on Microstructure, Phases, and Properties of Al-Si Coated Hot-Press-Forming Steel Sheets
MATERIALS TRANSACTIONS Vol.66(2025), No.1
-
-
Phase Equilibria of the Iron-rich Corner of the CaO–Fe2O3–Al2O3 System at 1240°C in Air
ISIJ International Vol.64(2024), No.15
-
Reduction and Carburization Behaviors of Iron Oxide Composite with Iron Carbide and Free Carbon
ISIJ International Vol.64(2024), No.15
-
Terminal Settling Velocity of Particle in Suspension
ISIJ International Vol.64(2024), No.15
You can use this feature after you logged into the site.
Please click the button below.