- TOP
- Zairyo-to-Kankyo
- Vol. 61 (2012), No. 6
Zairyo-to-Kankyo Vol. 61 (2012), No. 6
Backnumber
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Keyword Ranking
22 Dec. (Last 30 Days)
Zairyo-to-Kankyo Vol. 61 (2012), No. 6
Hydrogen Absorption Behavior of Steel Bar for Prestressed Concrete in a Solution of Ammonium Thiocyanate
Tomoki Doshida, Kenichi Takai, Mikiyuki Ichiba
pp. 249-256
DOI:
10.3323/jcorr.61.249Abstract
A solution of ammonium thiocyanate is used in the FIP (Fédération International de la Précontrainte) test as a hydrogen charging method. Though this method is comparatively simple, fracture time in the FIP test and hydrogen content often differ among various testing institutes. However, the detailed hydrogen absorption behavior in the solution is still not clear. In this context, the effects of existing states of hydrogen, oxide film on the specimen surface, specific solution volume to specimen surface area, immersion time and solution temperature on the hydrogen absorption behavior of a steel bar for reinforcing prestressed concrete were investigated by immersing it in the solution. The amount of absorbed hydrogen increased with immersion time, reached its maximum, and then decreased with increasing immersion time. A main factor of the decrease in the amount of absorbed hydrogen was corrosion products, including Fe, O and S, formed on the specimen surface, since the amount of absorbed hydrogen increased again as a result of merely polishing the surface. This indicates that corrosion products formed on immersing specimens in a solution of ammonium thiocyanate strongly affect hydrogen absorption behavior. Whereas, variation of the solution, such as increase in pH, during immersion also affects slightly hydrogen absorption behavior.
Readers Who Read This Article Also Read
Tetsu-to-Hagané Vol.98(2012), No.5
Article Access Ranking
22 Dec. (Last 30 Days)
-
Wettability of CaS against molten iron at 1873 K
ISIJ International Advance Publication
-
Precipitation Behavior of MnS from Molten Iron to Al2O3 during Solidification
Tetsu-to-Hagané Advance Publication
-
Reduction and Melting Behaviors of Iron Oxide Composite with Carbon Deposited Using CO-CO2-H2 Mixed Gas
ISIJ International Advance Publication
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Advance Publication
-
In-situ Observation of Precipitation and Growth of MnS Inclusions during Solidification of a High Sulfur Steel
ISIJ International Vol.64(2024), No.14
-
In-situ Observation of Inclusion Formation Behaviors during Solidification Process Using Model Alloy
Tetsu-to-Hagané Advance Publication
-
Evaluation method for the three-dimensional behavior of bubbles in a liquid metal under horizontal magnetic field using ultrasonic tomography
ISIJ International Advance Publication
-
Effect of Heating Rate on the Non-Isothermal Hydrogen Reduction of Hematite Pellets
ISIJ International Advance Publication
-
Effects of Manganese on Microstructure and Work-hardening Behavior of Low-carbon Lath Martensitic Steel
ISIJ International Advance Publication
-
Chemical and Mechanical Factors on Phosphorus Dissolution Behavior from P-concentrated Slag
ISIJ International Vol.64(2024), No.14
You can use this feature after you logged into the site.
Please click the button below.