- TOP
- Zairyo-to-Kankyo
- Vol. 71 (2022), No. 2
Zairyo-to-Kankyo Vol. 71 (2022), No. 2
Backnumber
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Search Phrase Ranking
24 Mar. (Last 30 Days)
Zairyo-to-Kankyo Vol. 71 (2022), No. 2
Effect of Oxygen Concentration on Corrosion Rate of Carbon Steel in Air/solution Alternating Condition
Kyohei Otani, Fumiyoshi Ueno, Chiaki Kato
pp. 40-45
DOI:
10.3323/jcorr.71.40Abstract
The purpose of this study is to investigate the effect of oxygen concentration in the air on the corrosion rate of carbon steel in an air/solution alternating environment in the low oxygen concentration range and to clarify the corrosion rate and corrosion mechanism of carbon steel depending on the oxygen concentration in air by the mass change of specimens before and after the corrosion test and observing the iron rust layer formed on the surface of carbon steel. The corrosion rate increases with increasing oxygen concentration in the air, and the gradient of the corrosion rate decreases gradually. The maximum erosion depth increased with increasing oxygen concentration except for the case of 1% oxygen concentration, however, the maximum erosion depth for 1% oxygen concentration was larger than that for 5% air oxygen concentration. It was clarified from the cross-sectional observation that the reason for the specific increase in the maximum erosion depth only when the oxygen concentration was 1% due to the localized corrosion of carbon steel.
Statistical Analysis of Nonmetallic Inclusions as Initiation Sites of Pitting Corrosion for Stainless Steel by All-surface Survey
Kenichiro Eguchi
pp. 46-56
DOI:
10.3323/jcorr.71.46Abstract
All nonmetallic inclusions on the surface of a stainless steel sample were analyzed with a scanning electron microscope with a function of automatically observing and analyzing nonmetallic inclusions. The effect of the inclusion type and size on the tendency of pit initiation was then quantitatively evaluated by observing the pits generated on the sample surface. It was found that the probability of stable pit growth increased as the major axis of the inclusions increased, but no effect of the inclusion type was observed. However, an effect of the inclusion type on the tendency of repassivation pit initiation was observed.
Article Access Ranking
24 Mar. (Last 30 Days)
-
-
A Review on the Humic Substances in Pelletizing Binders: Preparation, Interaction Mechanism, and Process Characteristics
ISIJ International Vol.63(2023), No.2
-
Austenite reversion behavior of maraging steel additive-manufactured by laser powder bed fusion
ISIJ International Advance Publication
-
Effect of Nb on grain growth behavior in the heat affected zone of linepipe steels
ISIJ International Advance Publication
-
Current Status and Future Scope of Phase Diagram Studies
ISIJ International Vol.63(2023), No.3
-
Heat Conduction through Different Slag Layers in Mold. Thermal Conductivity Measurement of Commercial Mold Fluxes
ISIJ International Vol.63(2023), No.2
-
Thermodynamic formation and three-dimensional characterization of MnS-MgAl2O4 composite inclusions in steel
ISIJ International Advance Publication
-
3D transient heat transfer simulation and optimization for initial stage of steel continuous casting process
ISIJ International Advance Publication
-
Preface to the Special Issue “Fundamental Researches and its Applications for Strengthening in High Temperature Materials”
Tetsu-to-Hagané Vol.109(2023), No.3
-
Phase-field Modeling and Simulation of Solid-state Phase Transformations in Steels
ISIJ International Vol.63(2023), No.3
You can use this feature after you logged into the site.
Please click the button below.