- TOP
- Zairyo-to-Kankyo
- Vol. 71 (2022), No. 2
Zairyo-to-Kankyo Vol. 71 (2022), No. 2
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Zairyo-to-Kankyo Vol. 71 (2022), No. 2
Effect of Oxygen Concentration on Corrosion Rate of Carbon Steel in Air/solution Alternating Condition
Kyohei Otani, Fumiyoshi Ueno, Chiaki Kato
pp. 40-45
DOI:
10.3323/jcorr.71.40Abstract
The purpose of this study is to investigate the effect of oxygen concentration in the air on the corrosion rate of carbon steel in an air/solution alternating environment in the low oxygen concentration range and to clarify the corrosion rate and corrosion mechanism of carbon steel depending on the oxygen concentration in air by the mass change of specimens before and after the corrosion test and observing the iron rust layer formed on the surface of carbon steel. The corrosion rate increases with increasing oxygen concentration in the air, and the gradient of the corrosion rate decreases gradually. The maximum erosion depth increased with increasing oxygen concentration except for the case of 1% oxygen concentration, however, the maximum erosion depth for 1% oxygen concentration was larger than that for 5% air oxygen concentration. It was clarified from the cross-sectional observation that the reason for the specific increase in the maximum erosion depth only when the oxygen concentration was 1% due to the localized corrosion of carbon steel.
Statistical Analysis of Nonmetallic Inclusions as Initiation Sites of Pitting Corrosion for Stainless Steel by All-surface Survey
Kenichiro Eguchi
pp. 46-56
DOI:
10.3323/jcorr.71.46Abstract
All nonmetallic inclusions on the surface of a stainless steel sample were analyzed with a scanning electron microscope with a function of automatically observing and analyzing nonmetallic inclusions. The effect of the inclusion type and size on the tendency of pit initiation was then quantitatively evaluated by observing the pits generated on the sample surface. It was found that the probability of stable pit growth increased as the major axis of the inclusions increased, but no effect of the inclusion type was observed. However, an effect of the inclusion type on the tendency of repassivation pit initiation was observed.
Article Access Ranking
13 Oct. (Last 30 Days)
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
Growth, Removal, and Agglomeration of Various Type of Oxide Inclusions in Molten Steel
Tetsu-to-Hagané Vol.111(2025), No.11
-
Integrated Steelworks that Reduce CO2 Emissions by More Than 80% ─ Challenge for Carbon-Neutral Integrated Steelworks ─
Tetsu-to-Hagané Vol.111(2025), No.13
-
Capillary Infiltration of Slag in Hydrogen-Direct Reduced Iron and Influence on Melting
ISIJ International Advance Publication
-
Novel application of photoelectron yield spectroscopy to the detection of hydrogen in steel under atmospheric conditions
ISIJ International Advance Publication
-
-
Continuous recrystallization of ferrite matrix manifested by cementite pinning in deformed pearlite
ISIJ International Advance Publication
-
Formation Behavior of Plating Films of Zn−V Composite Electroplated Steel Sheets and its Heat Dissipation Characteristics
ISIJ International Advance Publication
-
Numerical analysis of low-carbon blast furnace operations by coke oven and hydrogen gases injection in COURSE50 experimental blast furnace
ISIJ International Advance Publication
-
Advancements in the development, industrial production, and applications of ultra-high nitrogen low alloy steel
ISIJ International Advance Publication
You can use this feature after you logged into the site.
Please click the button below.