Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 93 (2014), No. 11

  • Hydrogen Production from Glucose and Cellulose Using Radio Frequency In-Liquid Plasma and Ultrasonic Irradiation

    pp. 1207-1212

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.93.1207

    The purpose of this study is to efficiently produce hydrogen gas from saccharide using 27.12 MHz radiofrequency (RF) in-liquid plasma with and without ultrasonic irradiation. The experiments were conducted adopting two different ultrasonic frequencies, one from a 29 kHz horn-type ultrasonic transducer and the other from a 1.6 MHz piezoelectric transducer. The glucose solution and cellulose suspension concentrations were varied from 0.5 wt% to 50 wt% and 0.5 wt% to 20 wt% respectively. Hydrogen gas was then produced by the decomposition of the glucose solution and cellulose suspension by RF in-liquid plasma with and without ultrasonic irradiation. The hydrogen production rate from glucose solution with ultrasonic irradiation applied was greater than that without ultrasonic irradiation. However, no hydrogen production rate enhancement was observed from decomposition of cellulose suspension with ultrasonic irradiation applied. Ultrasonic atomization and agitation enhanced the chemical reaction of nonvolatile glucose in in-liquid plasma. The increase of the gas production rate was caused by the direct decomposition of the glucose by the plasma due to the atomized glucose molecules being fed into the plasma in a bubble. In addition, by using a high-speed camera, it was clarified that acoustic streaming occurred when a 1.6 MHz piezoelectric transducer was used in the experiment.
    x

    Readers Who Read This Article Also Read

    1. Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight Journal of the Japan Institute of Energy Vol.93(2014), No.2
    2. Study on an HCCI Engine fueled by Biomass Gas (Effect of Inhomogeneity of Premixture) Journal of the Japan Institute of Energy Vol.93(2014), No.2
    3. Synthesis Gas Production via Non-catalytic and Catalytic Gasification of Lignin with High-moisture Content Journal of the Japan Institute of Energy Vol.93(2014), No.7
  • Preparation of Highly Concentrated Coal-Solvent Slurry by Hydrothermal Treatment and Oil Agglomeration as a Pretreatment for Brown Coal Liquefaction

    pp. 1213-1219

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.93.1213

    Synergistic effect of hydrothermal treatment (HTT) and oil agglomeration (OA) was investigated as a preparation method of coal-solvent slurry for a brown coal liquefaction process (BCL process). OA is a method to collect coal particles from a coal-water slurry by agglomeration of the coal particles and a solvent added to the coal-water slurry. In this study, a brown coal was treated by HTT at 320 ℃, and the HTT coal in the coalwater slurry was collected by OA. The OA were effectively performed by using recycled solvents obtained in the BCL process, because they had high affinity with the coal. The contents of ash and water in the collected HTT coal decreased to approximately half and 1/5, respectively, after both HTT and OA. Consequently, combination of the HTT and OA was found to be an effective method in view points of dewatering, de-ashing and preparation of a highly concentrated coal-solvent slurry for the BCL process. These effects contribute to a realization of the stable long-term operation of the liquefaction plant and increase in the oil productivity of the process.
    x

    Readers Who Read This Article Also Read

    1. Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight Journal of the Japan Institute of Energy Vol.93(2014), No.2
    2. Study on an HCCI Engine fueled by Biomass Gas (Effect of Inhomogeneity of Premixture) Journal of the Japan Institute of Energy Vol.93(2014), No.2
    3. Synthesis Gas Production via Non-catalytic and Catalytic Gasification of Lignin with High-moisture Content Journal of the Japan Institute of Energy Vol.93(2014), No.7
  • Evaluation of Chlorine in Waste Plastic Behavior in CaCO3 Calcination Process

    pp. 1220-1226

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.93.1220

    To clarify the chlorine behavior of waste plastics injected into CaCO3 calcination furnace, destination of Cl was estimated by thermodynamic calculation. Calculation result showed that chlorine in waste plastics was discharged to the exhaust gas as HCl at 900 ℃ and Cl content in CaO was negligible thermodynamically. Next, chlorination/dechlorination test of CaO using an electric furnace and Cl containing waste plastics injection test into commercial CaCO3 calcination furnace have been carried out. In chlorination/dechlorination test in electric furnace, chlorination/dechlorination rate of CaO at 600 ℃ was faster than those at 900 ℃. From results of SEM measurement, CaCl2 formed on the surface of CaO was detected. It is considered that CaCl2 melted at 900 ℃ inhibited chlorinated / dechlorination reaction. In waste plastics injection test at commercial CaCO3 calcination process, Cl content in CaO was affected by waste plastics speed into furnace. In case of high speed injection of waste plastics, the residence time of CaCl2 in furnace was longer than that of low speed injection. Result of the analysis of off-gas and dust from furnace, showed that HCl was not in off-gas but high concentration of Cl was included in that fine dust. It was considered to have sufficient time to declorination reaction of CaCl2. Therefore, it is considered that most of Cl in waste plastics was discharged as a fine dust in the commercial process.
    x

    Readers Who Read This Article Also Read

    1. Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight Journal of the Japan Institute of Energy Vol.93(2014), No.2
    2. Study on an HCCI Engine fueled by Biomass Gas (Effect of Inhomogeneity of Premixture) Journal of the Japan Institute of Energy Vol.93(2014), No.2
    3. Synthesis Gas Production via Non-catalytic and Catalytic Gasification of Lignin with High-moisture Content Journal of the Japan Institute of Energy Vol.93(2014), No.7
  • Removal of Acid Gases from Biomass-to-Liquid Process Syngas Used as Raw Materials for Fischer-Tropsch Technology

    pp. 1227-1231

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.93.1227

    Due to the high energy consumption and decreasing oil supply, the alternative energy sources such as biomass and agricultural waste can be considered as the main sources of energy in the future. Currently, one of the technologies to convert such biomass to more valuable products is biomass-to-liquid process. However, acid gases like CO2 and H2S are produced as intermediates causing the decrease in product heating values, operational problems, corrosion, and environmental concern. Therefore, the objective of this work is to simulate the absorption process of acid-gas cleaning by using various solutions at different operating conditions in order to meet the requirement. The results show that MDEA has higher performance to remove both gases compared to other chemicals. Furthermore, at 0.9 MPa and 25 °C, the treated gas provides 3.19 vol% CO2 and 27.7 ppb of H2S for MEA, 2.13 % CO2 and 0.02 ppb of H2S for MDEA and 7.45 % CO2 and 1.12*10-6 ppb of H2S for Selexol. Moreover, the liquid flow rate, solution concentration and effects of temperature and pressure are also investigated for the optimal design of the absorption column.
    x

    Readers Who Read This Article Also Read

    1. Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight Journal of the Japan Institute of Energy Vol.93(2014), No.2
    2. Study on an HCCI Engine fueled by Biomass Gas (Effect of Inhomogeneity of Premixture) Journal of the Japan Institute of Energy Vol.93(2014), No.2
    3. Synthesis Gas Production via Non-catalytic and Catalytic Gasification of Lignin with High-moisture Content Journal of the Japan Institute of Energy Vol.93(2014), No.7
  • Analysis of Drip Process on Foam Bed to Improve the Distillate Yield Rate on Pyramid Solar Still

    pp. 1232-1235

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.93.1232

    Technology of solar distillation technology is well established. However, application of locally available material in a manner techno-economically conducive to distillation has been always a point of investigation. In this paper, design, development and experimental results of four sloped pyramid shape top cover solar still is presented. The principal objective has been to use locally available foams to increase the distillate output. Experiments are carried out under the climatic conditions of Coimbatore, India (11° North, 77° East) under typical clear sky days. The system designed and developed is operated into two modes, (i) with thin water layer on the absorber and (ii) with black colored foam of varying dimensions are used in basin bed. The stainless steel basin of length 98.6 cm, breath 98.6 cm and 12.5 cm is used for water storage. An increase in condensate due to capillary rise is observed. System was further evaluated by recording variation in foam temperature, cover temperature, air temperature, ambient temperature and distillate output.
    x

    Readers Who Read This Article Also Read

    1. Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight Journal of the Japan Institute of Energy Vol.93(2014), No.2
    2. Study on an HCCI Engine fueled by Biomass Gas (Effect of Inhomogeneity of Premixture) Journal of the Japan Institute of Energy Vol.93(2014), No.2
    3. Synthesis Gas Production via Non-catalytic and Catalytic Gasification of Lignin with High-moisture Content Journal of the Japan Institute of Energy Vol.93(2014), No.7

Article Access Ranking

01 Jul. (Last 30 Days)

  1. Production and Technology of Iron and Steel in Japan during 2021 ISIJ International Vol.62(2022), No.6
  2. Reduction of CO2 Emissions from Blast Furnace Applying Reactive Coke Agglomerate and Hydrogen Reduction Tetsu-to-Hagané Vol.108(2022), No.6
  3. Role of Interfacial Properties in the Evolution of Non-metallic Inclusions in Liquid Steel ISIJ International Advance Publication
  4. Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel ISIJ International Vol.62(2022), No.2
  5. Preface to the Special Issue on “Frontier in Characterization of Materials and Processes for Steel Manufacturing” ISIJ International Vol.62(2022), No.5
  6. Wettability of Molten Fe–Al Alloys against Oxide Substrates with Various SiO2 Activity ISIJ International Advance Publication
  7. Hierarchical Deformation Heterogeneity during Lüders Band Propagation in an Fe-5Mn-0.1C Medium Mn Steel Clarified through in situ Scanning Electron Microscopy ISIJ International Advance Publication
  8. Application of Heat Transfer Coefficient Estimation Using Data Assimilation and a 1-D Solidification Model to 3-D Solidification Simulation ISIJ International Advance Publication
  9. Comparison of Oxidation Behavior of Various Reactive Elements in Alloys during Electroslag Remelting (ESR) Process: An Overview ISIJ International Advance Publication
  10. Nitrogen Solubility and Gas Nitriding Kinetics in Fe–Cr–Mo–C Alloy Melts under Pressurized Atmosphere ISIJ International Vol.62(2022), No.6

Search Phrase Ranking

01 Jul. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. inorganic coating corrosion
  5. chromate free coating
  6. si-killed spring steel
  7. steel
  8. 鉄と鋼
  9. a
  10. aaa