Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 99 (2020), No. 11

  • Investigative Study for Low Particulate Matter Emission in Rice Husk Combustion

    pp. 220-229

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.99.220

    Biomass combustion is one of the major sources of particulate matter (PM) emission, which forms a crucial part of air pollution. This study investigated the effects of particle size of rice husk and bran impurities on the emission trend of PM2.5. Rice husk from the Koshihikari variety, Oryza sativa was prepared into 3.00 g as rice husk samples from Japan (JPN). JPN had no bran impurities and consisted of normal sized Japonica husk particles (4.00 – 5.50 mm). Rice husk from the Nerica rice variety (a hybrid of O. sativa and O. glaberima) was imported and was prepared into 3.00 g as Nerica rice husk samples from Nigeria (NGR). The samples were smooth rice husk particles (0.10 – 2.00 mm) and had bran impurities. Rice husk briquette was made from JPN samples without a binding material, was prepared into 3.00 g as rice husk briquette (RB) sample. Three samples were combusted in temperatures between 600 °C and 1000 °C for a 3 minutes duration. The experimental set up comprised a Yamato F100 fixed bed electric furnace, Dust Track II aerosol analyzer and Testo 350 flue gas analyzer. Higher PM2.5 emission (32.4 mg/g) was recorded for the combustion of RB at 700 °C compared to that of NGR husk (23.7 mg/g) at 800 °C, and JPN (13.6 mg/g) at 900 °C. That is because, RB had a lower surface area and pore volume, which affected its air-fuel mixing during the combustion phases. JPN emitted higher carbon monoxide (1592.4 ppmv) due to higher Sulphur content (0.2wt%db). That caused additional competition for oxygen in the oxidation process of Sulphur from SO2 emission.
  • Environmental Impacts of Fuel Cell Assisted Bicycles in a Sharing Scheme

    pp. 230-235

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.99.230

    In recent years, bicycle sharing systems have been increasingly promoted in our society as an environmentally friendly mode of transportation. In this study, we discuss the bike sharing system in terms of the mitigation of eco-burden and/or biomass energy use (e.g., sewage sludge). Here, biomass energy use indicates that the bicycle’s fuel cell (FC) system is powered by H2 from the biomass. In other words, the bicycle is assisted with an FC and H2 storage as an alternative to the conventional Li-ion battery. Note that the H2 fuel is purified through the fermentation process and metal hydrides (MHs) are used for storing H2. In our study, we selected Sendai city as the model area. Our objective was to estimate the eco-burdens of our proposed bicycle using life cycle assessment methodology. We estimated the environmental impacts of the bicycles in the target area, considering their FC performance over a period of 10 years. Consequently, bicycle sharing using FC bicycles can reduce abiotic depletion potential by 15% and global warming potential by 10% compared to conventional bicycle sharing systems.
  • Table of Contents (in English)

    p. 9911tce_1

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.99.9911tce_1

  • Table of Contents (in Japanese)

    p. 9911tcj_1

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.99.9911tcj_1

Article Access Ranking

21 Jan. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. In-Situ Observation Experimental Study on the Agglomeration and Dispersion of Particles at the Interface of High-temperature Melts ISIJ International Advance Publication
  3. Development and Prospects of Refining Techniques in Steelmaking Process ISIJ International Vol.60(2020), No.12
  4. Effects of Residual Stress on Hydrogen Embrittlement of a Stretch-Formed Tempered Martensitic Steel Sheet ISIJ International Advance Publication
  5. Preface to the Diamond Jubilee Issue on “Selected Topics in Iron and Steel and Their Processing toward the New Steel Age” ISIJ International Vol.60(2020), No.12
  6. In situ Observation of Reduction Behavior of Multicomponent Calcium Ferrites by XRD and XAFS Tetsu-to-Hagané Advance Publication
  7. Review on the High-Temperature Thermophysical Properties of Continuous Casting Mold Fluxes for Highly Alloyed Steels Tetsu-to-Hagané Vol.107(2021), No.1
  8. Improved Hydrogen Embrittlement Resistance of Steel by Shot Peening and Subsequent Low-temperature Annealing ISIJ International Advance Publication
  9. Mechanism of Mild Cooling by Crystallisation of Mould Flux for Continuous Casting of Steel Tetsu-to-Hagané Vol.106(2020), No.12
  10. Intraparticle Temperature of Iron-Oxide Pellet during the Reduction Tetsu-to-Hagané Vol.60(1974), No.9

Search Phrase Ranking

21 Jan. (Last 30 Days)

  1. blast furnace
  2. 西山記念技術講座
  3. blast furnace permeability
  4. j. f. elliott
  5. blast furnace burden distribution
  6. blast furnace productivity
  7. bottom dross
  8. carbon-containing pellet
  9. cog blast furnace injection
  10. cr2o3 al2o3