Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 87 (2008), No. 3

  • Evaluation of Thermal Stimulation Method using Deep Geothermal Heat in Methane Hydrate Deposits

    pp. 199-207

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.87.199

    Thermal stimulation method is one of the prospective methods for gas production from methane hydrate (MH) deposits. In the thermal stimulation method, MH is dissolved to methane gas and water either by injecting heated water into the MH deposits or by circulating heated water in production wells. In this paper, the feasibility of heated water injection using the ground heat in the deep formation was investigated with numerical simulations. A co-axial ground heat exchanger (GHE) is designed to be drilled below MH deposits to produce the heated water. Numerical simulations showed that a GHE of 2000m deep can extract a geothermal heat over 200kW. On the basis of the estimated heat supply, numerical reservoir simulations were carried out to optimize the strategy of water injection in terms of gas production rates. The simulations showed that water injection should be commenced after a gas production with depressurization for 3 years since the timing maximized the cumulative gas recovery; the optimum injection rate was estimated 250L/min. The use of seawater as water source was also examined to demonstrate that the inhibitor effect of seawater, which lowers the dissociation temperature of MH, can accelerate the dissolution of MH. Assuming a production life of 20 years, the cumulative gas production, when using a GHE of 2000m deep and seawater as water source, was estimated 48.9% larger than the cumulative gas production without heated water injection.
    x

    Readers Who Read This Article Also Read

    1. Chemical Recycling of Waste Polypropylenes by Controlled Thermal Degradation Journal of the Japan Institute of Energy Vol.87(2008), No.3
  • Chemical Recycling of Waste Polypropylenes by Controlled Thermal Degradation

    pp. 208-214

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.87.208

    For recycling waste plastics, development of new chemical recycling technologies is expected in order to meet the goals of a society that is based on resource recycling. In order to add value to waste polypropylenes, we tried to synthesis end-reactive oligomers by controlled thermal degradation of waste food trays, battery cases, washer tanks, and plastic bottle caps. Thermal degradation was performed at 370 and 390 °C for 1 to 3 h under reduced pressure. The average number of double bonds per molecule of obtained oligomer ranged from 1.66 to 1.2. This shows that 69 to 36 mol% of oligomer contained telechelics having double bonds at either end. The number average molecular weight and molecular distribution decreased remarkably from the raw materials and ranged from 21700 to 1400 and from 3.3 to 1.4, respectively. The melting temperature of the crystals decreased from 160 to 130 °C, depending on molecular weight. The obtained oligomer was useful as an end-reactive oligomer. Thus, controlled thermal degradation is potentially useful as a method for the chemical recycling of waste polypropylene products.
    x

    Readers Who Read This Article Also Read

    1. Evaluation of Thermal Stimulation Method using Deep Geothermal Heat in Methane Hydrate Deposits Journal of the Japan Institute of Energy Vol.87(2008), No.3

Article Access Ranking

11 Apr. (Last 30 Days)

  1. Three-dimensional Investigations of Non-metallic Inclusions in Stainless Steels before and after Machining ISIJ International Advance Publication
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Influence of Ore Assimilation and Pore Formation during Sintering on Reduction Behavior of Sintered Ores Tetsu-to-Hagané Vol.107(2021), No.3
  4. Development Technology for Prevention of Macro-segregation in Casting of Steel Ingot by Insert Casting in Vacuum Atmosphere ISIJ International Advance Publication
  5. Numerical Simulation of Flow, Heat, Solidification, Solute Transfer and Electromagnetic Field for Vertical Mold and Curved Mold of Billet ISIJ International Vol.61(2021), No.3
  6. Deformation Behavior of Longitudinal Surface Flaws in Flat Rolling of Steel Wire ISIJ International Advance Publication
  7. Dissolution Behavior of Mg and Ca from Dolomite Refractory into Al-killed Molten Steel ISIJ International Advance Publication
  8. Structural and Mechanical Characterizations of Top Dross in a Molten Zinc Bath ISIJ International Vol.61(2021), No.3
  9. Numerical Study into Gravity Separation of Phosphorus from BOS Slag during Solidification ISIJ International Vol.61(2021), No.3
  10. Crystal Structure Analysis of Top Dross in Molten Zinc Bath by First Principles Calculation and Synchrotron X-ray Diffraction ISIJ International Vol.61(2021), No.3

Search Phrase Ranking

11 Apr. (Last 30 Days)

  1. blast furnace
  2. coke oven gas injection
  3. blast furnace permeability
  4. slag
  5. tetsu-to-hagané
  6. blast furnace productivity
  7. effects of coiling temperature on microstructure and precipitation behavior in
  8. fundamental study on rapid reduction of chromium ore in basic oxygen furnace
  9. iron phosphide (fe2p, fe3p)
  10. iron phosphide (fe2p, fe3p), formation energy