Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 86 (2007), No. 3

  • Spectroscopic Study on Luminous Counterflow Propane-Air Diffusion Flames: Measurement of Local Emissive Properties from Soot Cloud—1st Report: Non-Gray Body Feature of Luminous Flame & Its Applicability to Soot Diagnostics

    pp. 179-185

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.86.179

    Spectroscopic study on local radiative properties of luminous flame, i.e. emission from soot could, is performed by utilizing counterflow burner. By means of propane-air counterflow diffusion flames, measurements of one-dimensional (perpendicular to the flame surface) distributions of temperature and radiative quantities in the stationary flame are accomplished. Examined spectral range is in the visible and near-infrared regime (0.6 μm-1.0 μm). It turns out that bulk emissivity from the luminous flame, εLF, shows apparent wavelength dependency in the observed spectral range (εLFLF)), and its power-law constant, α, varies along the perpendicular to the flame surface. By taking the longer observed wavelength in the visible regime (eg., 0.9 μm), α closes to the constant irrespective of the observed location. By taking the shorter observed wavelength (eg., 0.7 μm), on the other hand, α tends to be monotonically decreased to the high temperature regime (α has inverse correlation to the flame temperature). This trend is somewhat similar to the particle diameter or volume fraction of the soot cloud according to the previous literatures. It is suggested that non-gray body feature of the luminous flame (i.e. wavelength dependency on bulk emissivity) is pronounced when the large soot fragments are coarsely distributed. Adopting the shorter wavelength may work for better diagnostics on local soot status.
  • Spectroscopic Study on Luminous Counterflow Propane-Air Diffusion Flames: Measurement of Local Emissive Properties from Soot Cloud—2nd Report: Local Emissive Properties in C1-C4 Flames

    pp. 186-192

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.86.186

    Spectroscopic study on local radiative properties of luminous flame, i.e. emission from soot could, with various hydrocarbon fuels (methane, ethane, propane, butane) are performed by utilizing 1-D counterflow burner. Emission from soot from counterflow diffusion flames is analyzed and bulk emissivities of soot cloud by different kind of fuels are obtained. Model parameter of emissivity, α(εLFLF)): wavelength dependency to the bulk emissivity, is calculated in different locations. Various fuel types and imposed flow velocities are considered as experimental parameters in the present study. As the carbon number of the fuel is increased, the produced soot cloud tends to be optically thick and the wavelength dependency parameter, α, becomes smaller. This trend suggests that the luminous flames provided by high-carbon contained fuel is close to gray-body emitter. An engineering model parameter, ξ, is introduced for precise prediction of the universal local soot condition and it works fairly well in the wide range of the fuel (C1∼C4) under the conditions considered in the present study.

Article Access Ranking

19 Jan. (Last 30 Days)

  1. Improving Blast Furnace Raceway Blockage Detection. Part 1: Classification of Blockage Events and Processing Framework ISIJ International Advance Publication
  2. A Review of the Chemistry, Structure and Formation Conditions of Silico-Ferrite of Calcium and Aluminum (‘SFCA’) Phases ISIJ International Vol.58(2018), No.12
  3. Hydrogen Embrittlement Susceptibility Evaluation of Tempered Martensitic Steels Showing Different Fracture Surface Morphologies Tetsu-to-Hagané Vol.105(2019), No.1
  4. Heat Transfer Characteristic of Slit Nozzle Impingement on High-temperature Plate Surface ISIJ International Advance Publication
  5. Fusion Zone Microstructural Evolution of Al-10% Si Coated Hot Stamping Steel during Laser Welding ISIJ International Vol.59(2019), No.1
  6. Effect of Annealing Time on Oxides Phases and Morphology along Oxidized Depth of Fe-3%Si Steel during Decarburization ISIJ International Vol.59(2019), No.1
  7. Improving Blast Furnace Raceway Blockage Detection. Part 2: Signal Processing of Hot Blast Pressure Data ISIJ International Advance Publication
  8. Effects of Sulfur and Titanium Interaction in Molten Pig Iron on Erosion of Carbon Brick ISIJ International Vol.59(2019), No.1
  9. Numerical Simulation of Decarburization Kinetics for Fe-3%Si Steel during Annealing ISIJ International Advance Publication
  10. Improving Blast Furnace Raceway Blockage Detection. Part 3: Visual Detection Based on Tuyere Camera Images ISIJ International Advance Publication

Search Phrase Ranking

19 Jan. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. 鉄と鋼
  5. laser welder
  6. titanium
  7. activity feo
  8. argon steel
  9. continous annealing
  10. eaf operation