Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 86 (2007), No. 3

  • Spectroscopic Study on Luminous Counterflow Propane-Air Diffusion Flames: Measurement of Local Emissive Properties from Soot Cloud—1st Report: Non-Gray Body Feature of Luminous Flame & Its Applicability to Soot Diagnostics

    pp. 179-185

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.86.179

    Spectroscopic study on local radiative properties of luminous flame, i.e. emission from soot could, is performed by utilizing counterflow burner. By means of propane-air counterflow diffusion flames, measurements of one-dimensional (perpendicular to the flame surface) distributions of temperature and radiative quantities in the stationary flame are accomplished. Examined spectral range is in the visible and near-infrared regime (0.6 μm-1.0 μm). It turns out that bulk emissivity from the luminous flame, εLF, shows apparent wavelength dependency in the observed spectral range (εLFLF)), and its power-law constant, α, varies along the perpendicular to the flame surface. By taking the longer observed wavelength in the visible regime (eg., 0.9 μm), α closes to the constant irrespective of the observed location. By taking the shorter observed wavelength (eg., 0.7 μm), on the other hand, α tends to be monotonically decreased to the high temperature regime (α has inverse correlation to the flame temperature). This trend is somewhat similar to the particle diameter or volume fraction of the soot cloud according to the previous literatures. It is suggested that non-gray body feature of the luminous flame (i.e. wavelength dependency on bulk emissivity) is pronounced when the large soot fragments are coarsely distributed. Adopting the shorter wavelength may work for better diagnostics on local soot status.
  • Spectroscopic Study on Luminous Counterflow Propane-Air Diffusion Flames: Measurement of Local Emissive Properties from Soot Cloud—2nd Report: Local Emissive Properties in C1-C4 Flames

    pp. 186-192

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.86.186

    Spectroscopic study on local radiative properties of luminous flame, i.e. emission from soot could, with various hydrocarbon fuels (methane, ethane, propane, butane) are performed by utilizing 1-D counterflow burner. Emission from soot from counterflow diffusion flames is analyzed and bulk emissivities of soot cloud by different kind of fuels are obtained. Model parameter of emissivity, α(εLFLF)): wavelength dependency to the bulk emissivity, is calculated in different locations. Various fuel types and imposed flow velocities are considered as experimental parameters in the present study. As the carbon number of the fuel is increased, the produced soot cloud tends to be optically thick and the wavelength dependency parameter, α, becomes smaller. This trend suggests that the luminous flames provided by high-carbon contained fuel is close to gray-body emitter. An engineering model parameter, ξ, is introduced for precise prediction of the universal local soot condition and it works fairly well in the wide range of the fuel (C1∼C4) under the conditions considered in the present study.

Article Access Ranking

22 Mar. (Last 30 Days)

  1. Dependence of Carbon Concentration and Alloying Elements on the Stability of Iron Carbides ISIJ International Advance Publication
  2. Comprehensive Optimization Control Technology of Rolling Energy and Oil Consumption in Double Cold Rolling ISIJ International Advance Publication
  3. Experiments on Removal of Hydrophilic Fine Particles in Bubbly Flow ISIJ International Vol.59(2019), No.2
  4. Effects of Impurities and Processing Conditions in Al–1%Mn Alloys on the Formation of Thermally Stabilized Substructures MATERIALS TRANSACTIONS Vol.59(2018), No.11
  5. Temperature Field Distribution of a Dissected Blast Furnace ISIJ International Advance Publication
  6. Coating Film Profiles Generated by Fluctuating Location of the Wiping Pressure and Shear Stress ISIJ International Vol.59(2019), No.2
  7. Evolution of Blast Furnace Process toward Reductant Flexibility and Carbon Dioxide Mitigation in Steel Works ISIJ International Vol.56(2016), No.10
  8. Effect of EAF Slag Temperature and Composition on its Electrical Conductivity ISIJ International Vol.59(2019), No.2
  9. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) Iron Ore Sinter Bonding Phase Formation: Effects of Basicity and Magnesium on Crystallisation during Cooling ISIJ International Vol.59(2019), No.2
  10. Effect of Nut Coke Addition on Physicochemical Behaviour of Pellet Bed in Ironmaking Blast Furnace ISIJ International Advance Publication

Search Phrase Ranking

22 Mar. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. galvanizing
  5. tuyere abrasion
  6. 鉄と鋼
  7. tuyere erosion
  8. isij
  9. lme
  10. tuyere failure