Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 86 (2007), No. 3

  • Spectroscopic Study on Luminous Counterflow Propane-Air Diffusion Flames: Measurement of Local Emissive Properties from Soot Cloud—1st Report: Non-Gray Body Feature of Luminous Flame & Its Applicability to Soot Diagnostics

    pp. 179-185

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.86.179

    Spectroscopic study on local radiative properties of luminous flame, i.e. emission from soot could, is performed by utilizing counterflow burner. By means of propane-air counterflow diffusion flames, measurements of one-dimensional (perpendicular to the flame surface) distributions of temperature and radiative quantities in the stationary flame are accomplished. Examined spectral range is in the visible and near-infrared regime (0.6 μm-1.0 μm). It turns out that bulk emissivity from the luminous flame, εLF, shows apparent wavelength dependency in the observed spectral range (εLFLF)), and its power-law constant, α, varies along the perpendicular to the flame surface. By taking the longer observed wavelength in the visible regime (eg., 0.9 μm), α closes to the constant irrespective of the observed location. By taking the shorter observed wavelength (eg., 0.7 μm), on the other hand, α tends to be monotonically decreased to the high temperature regime (α has inverse correlation to the flame temperature). This trend is somewhat similar to the particle diameter or volume fraction of the soot cloud according to the previous literatures. It is suggested that non-gray body feature of the luminous flame (i.e. wavelength dependency on bulk emissivity) is pronounced when the large soot fragments are coarsely distributed. Adopting the shorter wavelength may work for better diagnostics on local soot status.
  • Spectroscopic Study on Luminous Counterflow Propane-Air Diffusion Flames: Measurement of Local Emissive Properties from Soot Cloud—2nd Report: Local Emissive Properties in C1-C4 Flames

    pp. 186-192

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.86.186

    Spectroscopic study on local radiative properties of luminous flame, i.e. emission from soot could, with various hydrocarbon fuels (methane, ethane, propane, butane) are performed by utilizing 1-D counterflow burner. Emission from soot from counterflow diffusion flames is analyzed and bulk emissivities of soot cloud by different kind of fuels are obtained. Model parameter of emissivity, α(εLFLF)): wavelength dependency to the bulk emissivity, is calculated in different locations. Various fuel types and imposed flow velocities are considered as experimental parameters in the present study. As the carbon number of the fuel is increased, the produced soot cloud tends to be optically thick and the wavelength dependency parameter, α, becomes smaller. This trend suggests that the luminous flames provided by high-carbon contained fuel is close to gray-body emitter. An engineering model parameter, ξ, is introduced for precise prediction of the universal local soot condition and it works fairly well in the wide range of the fuel (C1∼C4) under the conditions considered in the present study.

Article Access Ranking

04 Jul. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. Production and Technology of Iron and Steel in Japan during 2019 ISIJ International Vol.60(2020), No.6
  3. Numerical Simulation of Fluid Flow and Solidification in a Vertical Round Bloom Caster Using a Four-port SEN with Mold and Strand Electromagnetic Stirring ISIJ International Advance Publication
  4. Sinter Pot for Temperature Measurement of the Top Layer during and After the Ignition ISIJ International Advance Publication
  5. Preface to the Special Issue on “Behaviour of Light Elements in Steels and Its Effects on Microstructure and Properties” Tetsu-to-Hagané Vol.106(2020), No.6
  6. Scheduling in Continuous Steelmaking Casting: A Systematic Review ISIJ International Vol.60(2020), No.6
  7. Taguchi Orthogonal Test on Granule Properties and Porosity Distribution in Sintering Bed using High-resolution X-ray Computed Tomography ISIJ International Vol.60(2020), No.6
  8. From Iron Ore to Crude Steel: Mass Flows Associated with Lump, Pellet, Sinter and Scrap Iron Inputs ISIJ International Vol.60(2020), No.6
  9. Deoxidation of Electroslag Remelting (ESR) – A Review ISIJ International Vol.60(2020), No.6
  10. Improvement in Reduction Behavior of Sintered Ores in a Blast Furnace through Injection of Reformed Coke Oven Gas ISIJ International Advance Publication

Search Phrase Ranking

04 Jul. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. electric arc furnace
  5. cao sio2 viscosity
  6. 17-7 ph
  7. bearing steel
  8. hole expansion ratio
  9. big data
  10. cao