Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 71 (1992), No. 8

  • The Effect of Ultrasonic Irradiation on the Hydrogenation of Several Coal Model Compounds using Molten Potassium and Ethanol

    pp. 751-757

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.71.751

    The hydrogenation of coal model compounds using molten potassium and ethanol was carried out with and without ultrasonic irradiation. Aromatic ethers and ploynuclear hydrocarbons were employed as coal model compounds. The cleavage of carbon-oxygen bonds was dominant for the aromatic ethers, whereas main products obtained from the polynuclear hydrocarbons were compounds derived from hydrogenation of the aromatic nucleus. The reaction mechanism was affected by the structure of the substrate: one-electron and/ or two-electron reaction. The effect of ultrasonic irradiation is very small in the reaction of the hydrocarbons. On the other hand, striking effect caused by the ultrasonic irradiation, such as an inccrease of the rate, an increase of the final conversion, and the promotion of sidereactions, ware observed for the reaction of the ethers.
    x

    Readers Who Read This Article Also Read

    1. Hydrogenation of Coal Model Compounds Using Chromium Oxide Catalysts Journal of the Japan Institute of Energy Vol.72(1993), No.6
  • Experimental Simulation of Coke Deposition in Preheater of Coal Liquefaction Process

    pp. 758-765

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.71.758

    Characteristics of coke deposition onto the inner surface of a coal liquefaction preheater tube were experimentally simulated in an autoclave reactor for a range of industrial operating variables. A test piece with a tubular baffle was installed in the autoclave to generate artificial heat spots in slurry by controlling the heatflux from the piece to the slurry as well as the slurry velocity near the piece.
    No coke deposition was found to occur under conditions with a bulk slurry temperature of ca. 700K, oil/coal weight ratios from 55/45 to 60/40 and slurry velocities from 0.5 to 1.0m/s. On the other hand, an appreciable coke deposition was observed at bulk slurry temperatures over approximately 720K and slurry velocities below about 0.1m/s. Surface temperature of the test piece increased with a progress of the coke deposition. Within the present experimental conditions, the deposition rate was in a range about 1.5×10-6 to 2.3×10-6g·cm-2·min-1·g-1-coal. Also, amount of coke deposited increased with S/C and O/C atomic ratios of parent coal while decreasing with the increase of H/C atomic ratio of parent coal.
  • Effect of Fuel Ratio on Fuel-N Emission During Coal Pyrolysis

    pp. 766-771

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.71.766

    The emission behaviors of fuel-N from coal were studied by pyrolyzing 6 different coals of which the fuel ratio ranged from 0.9 to 6.6, under various heating conditions in He atmosphere. The experiments were made by changing the temperature (573K-1273K), the coal particle diameter (37-4500 μm) and the heating rate (5-1000K/min). As the results: 1) Fuel/N started to be released from coal when the temperature reached about 673-773K, which was about 50-100°C higher than the temperature where the main volatile components like C and H started to be released. 2) Two different emission behaviour of fuel-N from coal were observed below and above 1173K. 3) The conversion of fuel-N increased with decrease in fuel ratio at the same heating temperature. The conversion of fuel-N, the fuel ratio and the temperature were well correlated. 4) There was no influence of coal particle size on the conversion of fuel-N below 1173K. However, when the temperature became higher than 1173K, the conversion of fuel-N tended to decrease with increase in coal particla diameter.

Article Access Ranking

30 Sep. (Last 30 Days)

  1. Deformation of Non-metallic Inclusions in Steel during Rolling Process: A Review ISIJ International Advance Publication
  2. Interaction Coefficients of Cu and Sn with Mn in Molten Iron at 1873 K ISIJ International Advance Publication
  3. Thickness classifier on steel in heavy melting scrap by deep-learning-based image analysis ISIJ International Advance Publication
  4. Soft sensors and Diagnostic Models Using Real Time Data of Blast Furnaces at Tata Steel ISIJ International Advance Publication
  5. Bandwidth Maximization of Disturbance Observer Based on Experimental Frequency Response Data SICE Journal of Control, Measurement, and System Integration Vol.13(2020), No.6
  6. Effect of SiO2 content and mass ratio of CaO to Al2O3 on the viscosity and structure of CaO-Al2O3-B2O3-SiO2 slags ISIJ International Advance Publication
  7. Thermodynamic Conditions of MgO and MgO·Al2O3 Formation and Variation of Inclusions Formed in Fe-17 mass%Cr Steel at 1873 K Tetsu-to-Hagané Vol.108(2022), No.8
  8. Non-Cooperative Optimization Algorithm of Charging Scheduling for Electric Vehicle SICE Journal of Control, Measurement, and System Integration Vol.13(2020), No.6
  9. Comparison of Oxidation Behavior of Various Reactive Elements in Alloys during Electroslag Remelting (ESR) Process: An Overview ISIJ International Vol.62(2022), No.8
  10. Effect of 2CaO·SiO2 Addition on Reaction Behavior of Iron Ore Sinters ISIJ International Vol.62(2022), No.9

Search Phrase Ranking

30 Sep. (Last 30 Days)

  1. blast furnace
  2. 鉄と鋼
  3. si-killed spring steel
  4. hydrogen trapping
  5. isij international
  6. steel
  7. bake hardening
  8. damping alloy
  9. matsumura
  10. pickling