Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 71 (1992), No. 8

  • The Effect of Ultrasonic Irradiation on the Hydrogenation of Several Coal Model Compounds using Molten Potassium and Ethanol

    pp. 751-757

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.71.751

    The hydrogenation of coal model compounds using molten potassium and ethanol was carried out with and without ultrasonic irradiation. Aromatic ethers and ploynuclear hydrocarbons were employed as coal model compounds. The cleavage of carbon-oxygen bonds was dominant for the aromatic ethers, whereas main products obtained from the polynuclear hydrocarbons were compounds derived from hydrogenation of the aromatic nucleus. The reaction mechanism was affected by the structure of the substrate: one-electron and/ or two-electron reaction. The effect of ultrasonic irradiation is very small in the reaction of the hydrocarbons. On the other hand, striking effect caused by the ultrasonic irradiation, such as an inccrease of the rate, an increase of the final conversion, and the promotion of sidereactions, ware observed for the reaction of the ethers.
    x

    Readers Who Read This Article Also Read

    1. Hydrogenation of Coal Model Compounds Using Chromium Oxide Catalysts Journal of the Japan Institute of Energy Vol.72(1993), No.6
  • Experimental Simulation of Coke Deposition in Preheater of Coal Liquefaction Process

    pp. 758-765

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.71.758

    Characteristics of coke deposition onto the inner surface of a coal liquefaction preheater tube were experimentally simulated in an autoclave reactor for a range of industrial operating variables. A test piece with a tubular baffle was installed in the autoclave to generate artificial heat spots in slurry by controlling the heatflux from the piece to the slurry as well as the slurry velocity near the piece.
    No coke deposition was found to occur under conditions with a bulk slurry temperature of ca. 700K, oil/coal weight ratios from 55/45 to 60/40 and slurry velocities from 0.5 to 1.0m/s. On the other hand, an appreciable coke deposition was observed at bulk slurry temperatures over approximately 720K and slurry velocities below about 0.1m/s. Surface temperature of the test piece increased with a progress of the coke deposition. Within the present experimental conditions, the deposition rate was in a range about 1.5×10-6 to 2.3×10-6g·cm-2·min-1·g-1-coal. Also, amount of coke deposited increased with S/C and O/C atomic ratios of parent coal while decreasing with the increase of H/C atomic ratio of parent coal.
  • Effect of Fuel Ratio on Fuel-N Emission During Coal Pyrolysis

    pp. 766-771

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.71.766

    The emission behaviors of fuel-N from coal were studied by pyrolyzing 6 different coals of which the fuel ratio ranged from 0.9 to 6.6, under various heating conditions in He atmosphere. The experiments were made by changing the temperature (573K-1273K), the coal particle diameter (37-4500 μm) and the heating rate (5-1000K/min). As the results: 1) Fuel/N started to be released from coal when the temperature reached about 673-773K, which was about 50-100°C higher than the temperature where the main volatile components like C and H started to be released. 2) Two different emission behaviour of fuel-N from coal were observed below and above 1173K. 3) The conversion of fuel-N increased with decrease in fuel ratio at the same heating temperature. The conversion of fuel-N, the fuel ratio and the temperature were well correlated. 4) There was no influence of coal particle size on the conversion of fuel-N below 1173K. However, when the temperature became higher than 1173K, the conversion of fuel-N tended to decrease with increase in coal particla diameter.

Article Access Ranking

19 May. (Last 30 Days)

  1. Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel ISIJ International Vol.62(2022), No.2
  2. Interaction Coefficients of Mo, B, Ni, Ti and Nb with Sn in Molten Fe–18mass%Cr Alloy ISIJ International Vol.62(2022), No.3
  3. Dissolution Kinetics of Synthetic FeCr2O4 in CaO–MgO–Al2O3–SiO2 Slag ISIJ International Vol.62(2022), No.4
  4. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of MgO Source on Phase Formation during Heating ISIJ International Vol.62(2022), No.4
  5. Surface Quality Evaluation of Heavy and Medium Plate Using an Analytic Hierarchy Process Based on Defects Online Detection ISIJ International Advance Publication
  6. Exploration of the Relationship between the Electromagnetic Field and the Hydrodynamic Phenomenon in a Channel Type Induction Heating Tundish Using a Validated Model ISIJ International Vol.62(2022), No.4
  7. Comparison of Oxidation Behavior of Various Reactive Elements in Alloys during Electroslag Remelting (ESR) Process: An Overview ISIJ International Advance Publication
  8. Assessment of Blast Furnace Operational Constraints in the Presence of Hydrogen Injection ISIJ International Advance Publication
  9. Phenomenological Understanding about Melting Temperature of Multi-Component Oxides Tetsu-to-Hagané Vol.108(2022), No.4
  10. Influence of Stabilizing Elements on Ductile-Brittle Transition Temperature (DBTT) of 18Cr Ferritic Stainless Steels ISIJ International Vol.62(2022), No.4

Search Phrase Ranking

19 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. steel
  5. galvannealing
  6. jet impingement
  7. jet impingement + cooling + runout table
  8. nitrogen
  9. refractory
  10. valve spring steel