Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 79 (2000), No. 12

  • Design of Suspended Bubble Column as Coal Liquefaction Reactor

    pp. 1159-1171

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.79.1159

    A coal liquefaction pilot plant of the NEDOL process, supported by New Energy and Industrial Technology Development Organization (NEDO), was in successful operation for a total of 269 days at Kashima, Japan. The liquefaction section involved three bubble-column liquefaction reactors, 1m in diameter, connected in series, and processed 150 tons of coal per day. The hydrodynamics and thermal behavior of the reactors were investigated. The relations of yields and actual slurry residence time measured by the neutron absorption tracer technique were shown in the case of Tanitoharum coal.
    The procedure for designing the 4m diameter reactors to process 2, 500 tons of coal per day, was developed based on the yields estimated by the reaction simulator validated by the data obtained on the pilot plant. The ratio of heavy oil fraction in recycled solvent was a determinant factor to maintain the stable operation. The design was also supported by the model study estimating the thermal behaviors, discussing the effect of mixing on the thermal efficiency.
    x

    Readers Who Read This Article Also Read

    1. Influence of Heating Rate during Pyrolysis on Gasification Reactivity of Coal Chars at High Temperatures Journal of the Japan Institute of Energy Vol.79(2000), No.11
    2. Measurements of Gas Diffusion in Supercritical Water Journal of the Japan Institute of Energy Vol.79(2000), No.11
    3. Effective Use of Unutilized Energy Journal of the Japan Institute of Energy Vol.79(2000), No.11
  • Evaluation of the Recycle for Nylon6 by Life Cycle Inventory Analysis

    pp. 1172-1181

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.79.1172

    To evaluate the recycle of Ny6, the energy consumption for the production of virgin Ny6 resin was compared with that of recycled Ny6 resin by LCI analysis.
    As a large amount of ammonium sulfate is produced as a by-product with virgin Ny6 from the same process, consumed energy and airborne emissions must be allocated to both products. The calculation result showed that the energy consumption for the production of virgin Ny6 was 170.7MJ/kg by the allocation method based on their prices. It was almost the same as the energy consumption of virgin Ny6 allocating all consumed energy to it, which was 177.8MJ/kg. Meanwhile, the energy consumption for the production of recycling Ny6 resin was 77.0MJ/kg. It was thought that the recycle of Ny6 had an advantage compared with virgin Ny6 from the viewpoint of the energy consumption. It should be noted that this analysis did not include the energy consumption to recover Ny6 textile and the weight loss at the degradation process of recovered Ny6.
    x

    Readers Who Read This Article Also Read

    1. Influence of Heating Rate during Pyrolysis on Gasification Reactivity of Coal Chars at High Temperatures Journal of the Japan Institute of Energy Vol.79(2000), No.11
    2. Measurements of Gas Diffusion in Supercritical Water Journal of the Japan Institute of Energy Vol.79(2000), No.11
    3. Effective Use of Unutilized Energy Journal of the Japan Institute of Energy Vol.79(2000), No.11
  • Effects of Introducing a District Cooling and Heating System Using Waste Heat frorr the Power Generated by Garbage Incineration on Emission Reduction Costs

    pp. 1182-1190

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.79.1182

    This study was conducted to clarify the capabilities of introducing a district cooling and heating system using the waste heat from the power generated by garbage incineration into the urban energy system.
    This system was compared with an independent air conditioning system and a dis-trict cooling and heating system using city gas.
    The results show the use of garbage generated waste heat to be highest in equipment costs and lowest in energy consumption among the three above-mentioned systems. The total costs of equipment plus energy vary with the volume of heat demand and the distances from the heat source to the demand sites.
    Consequently in the district cooling and heating system, the substitution of waste heat from the power generated by garbage incineration for city gas can reduce CO2 emissions at the cost of 15, 000yen/ton-CO2. This is dependent upon the distances between heat source and heat demand site being from 2-8km, with daily heat demands being 500-5, 000GJ/d for the respective distances from heat sources.
    x

    Readers Who Read This Article Also Read

    1. Influence of Heating Rate during Pyrolysis on Gasification Reactivity of Coal Chars at High Temperatures Journal of the Japan Institute of Energy Vol.79(2000), No.11
    2. Measurements of Gas Diffusion in Supercritical Water Journal of the Japan Institute of Energy Vol.79(2000), No.11
    3. Effective Use of Unutilized Energy Journal of the Japan Institute of Energy Vol.79(2000), No.11

Article Access Ranking

23 May. (Last 30 Days)

  1. Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel ISIJ International Vol.62(2022), No.2
  2. Comparison of Oxidation Behavior of Various Reactive Elements in Alloys during Electroslag Remelting (ESR) Process: An Overview ISIJ International Advance Publication
  3. Dissolution Kinetics of Synthetic FeCr2O4 in CaO–MgO–Al2O3–SiO2 Slag ISIJ International Vol.62(2022), No.4
  4. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of MgO Source on Phase Formation during Heating ISIJ International Vol.62(2022), No.4
  5. Interaction Coefficients of Mo, B, Ni, Ti and Nb with Sn in Molten Fe–18mass%Cr Alloy ISIJ International Vol.62(2022), No.3
  6. Phenomenological Understanding about Melting Temperature of Multi-Component Oxides Tetsu-to-Hagané Vol.108(2022), No.4
  7. Ironmaking Using Municipal Solid Waste (MSW) as Reducing Agent: A Preliminary Investigation on MSW Decomposition and Ore Reduction Behavior ISIJ International Advance Publication
  8. A Novel Process for Separation of Magnetite and Phosphorous Phases from a CaO–SiO2–FeO–P2O5 Slag ISIJ International Advance Publication
  9. Removal of Inclusions using Swirling Flow in a Single-Strand Tundish ISIJ International Advance Publication
  10. Influence of Acicular Ferrite Microstructure on Toughness of Ti-Rare Earth Metal (REM)-Zr Killed Steel Tetsu-to-Hagané Vol.108(2022), No.5

Search Phrase Ranking

23 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. galvannealing
  5. jet impingement
  6. jet impingement + cooling + runout table
  7. nitrogen
  8. refractory
  9. steel
  10. valve spring steel