Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 88 (2009), No. 1

  • Characteristics of Gasification Residue in a High Temperature Gasification Process of Woody Biomass

    pp. 50-57

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.88.50

    High temperature gasification experiment of woody biomass was carried out in an entrained down flow gasifier. In this experiment, characteristics of gasification residue in a high temperature gasification process were clarified. The highest temperature of gasifier was over 1273 K. Gasification experiment was conducted at different feed stock feeding rates, and gasification residue was collected during the gasification experiment at various dust collection points. Collection point of gasification residue was the gasifier exit, gasifier bottom, cyclone and bag filter of the gasification unit. Characterization of residue was conducted by chemical composition, particle diameter and particle shape. Temperature distribution in the gasifier and produced gas composition was monitored during the gasification experiment. Chemical composition of collected gasification residue was different at different dust collection points. Ash content was the highest in the gasifier bottom residue, and fixed carbon content was the highest in the bag filter residue. Particle diameter and observed particle shape was also different at different dust collection points. Gasification temperature increased with increasing the feeding ratio, chemical composition and particle diameter of residue was changed drastically. Ash ratio increased in the gasifier bottom, and fixed carbon ratio increased in the bag filter. But the differences in particle shapes collected at the same dust collection point were not significant. Calculated carbon conversion values didn't show the big difference in different experimental conditions, but gasification behavior in the gasifier was different, and soot generation increased with increasing the gasification temperature.
  • Assessment of Renewable Energy by Using GIS - A Case Study of Unzen City -

    pp. 58-69

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.88.58

    The purpose of this study is to improve accuracy of the renewable energy assessment in order to promote renewable energy utilization. We have a local renewable energy assessment in the local new energy vision by NEDO. But NEDO assessed potential of local renewable energy with different methods for different energies. Some of these assessments are not accurate enough to decide policy for promoting renewable energy. Therefore, the authors developed a new method of renewable energy assessment and improved the assessment more systematic and accurate by using GIS. The new method evaluates amount of renewable energy as frequency distribution and shows spatial distribution of renewable energy. The authors applied the new method to Unzen City in Nagasaki Prefecture as an example and showed availability of the new method. The result showed that Unzen City has practical potential of 45MWe for geothermal energy, 7.6 MWe for wind energy, 1.1MWe for solar energy and 1.7MWe for small-scale hydropower as a most probable value and that wind and geothermal energy are concentrated to the specific areas and hydropower and solar energy are distributed in whole Unzen City.

Article Access Ranking

07 May. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. Steam Reforming of Methane on Sponge Iron: Influence of Gas Composition on Reaction Rate ISIJ International Vol.61(2020), No.1
  3. Preface to the Special Issue on “Toward Suppression of Hydrogen Absorption and Hydrogen Embrittlement for Steels” ISIJ International Vol.61(2021), No.4
  4. Automatic Ultrasonic Testing of Non-metallic Inclusions Detectable with Size of Several Tens of Micrometers Using a Double Probe Technique along the Longitudinal Axis of a Small-diameter Bar ISIJ International Vol.61(2020), No.1
  5. Rapid Method to Measure Hydrogen Diffusion Coefficient in Metal Using a Multi-sine Wave Signal ISIJ International Vol.61(2021), No.4
  6. Three-dimensional Investigations of Non-metallic Inclusions in Stainless Steels before and after Machining ISIJ International Advance Publication
  7. Review of Positron Lifetime Studies of Lattice Defects Formed during Tensile Deformation in a Hydrogen Environment ISIJ International Vol.61(2021), No.4
  8. Method for Evaluating Hydrogen Embrittlement of High-Strength Steel Sheets Considering Press Formation and Hydrogen Existence State in Steel ISIJ International Vol.61(2021), No.4
  9. A Visualization Method of Quantifying Carbon Combustion Energy in the Sintering Packed Bed ISIJ International Advance Publication
  10. Effects of Stress and Plastic Strain on Hydrogen Embrittlement Fracture of a U-bent Martensitic Steel Sheet ISIJ International Vol.61(2021), No.4

Search Phrase Ranking

07 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. coke oven gas injection
  4. ultrasonic inclusion
  5. blast furnace productivity
  6. continuous casting of electrical steel
  7. slag
  8. activities in the liquid solution sio2-cao- mgo-al2o3 at 1600℃
  9. activity coefficient of ti in liquid iron
  10. cokes gasification