Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 93 (2013), No. 1

  • NEDO's Worldwide Dissemination of High-efficiency Clean Coal Technology

    pp. 107-112

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.93.107

    Since fiscal year 2011 the New Energy and Industrial Technology Development Organization (NEDO) has carried out feasibility studies to promote the international diffusion of high-efficiency clean coal technology (CCT) in order to stabilize energy supply and demand and address global environmental issues. This paper presents an overview of good examples for strengthening Japan's global competitiveness and support for system exports in twenty feasibility studies that were conducted in fiscal years 2011 and 2012. Highlights of the paper include Japan's high efficiency and low failure rate in long-term operation and maintenance, matching the needs of counterpart countries by reducing environmental load using carbon dioxide capture and storage (CCS) technology, and optimizing facilities, layout, etc. Although CO2 emission reduction measures and the application of high-efficiency CCT such as ultrasupercritical (USC) technology to replace old existing power stations is effective, improved generation efficiency and the introduction of CCS should also be strategically developed in the near future. Through these activities, NEDO is contributing to the realization of a low carbon society.
    x

    Readers Who Read This Article Also Read

    1. Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight Journal of the Japan Institute of Energy Vol.93(2014), No.2
    2. Study on an HCCI Engine fueled by Biomass Gas (Effect of Inhomogeneity of Premixture) Journal of the Japan Institute of Energy Vol.93(2014), No.2
    3. Synthesis Gas Production via Non-catalytic and Catalytic Gasification of Lignin with High-moisture Content Journal of the Japan Institute of Energy Vol.93(2014), No.7
  • Development of Bimodal Catalysts for Jet-fuel Synthesis via Fischer-Tropsch Synthesis

    pp. 113-118

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.93.113

    Jet fuel synthesis from biomass syngas via Fischer-Tropsch synthesis was firstly conducted using Co/ZrO2-SiO2 bimodal catalyst in a slurry-phase reaction process. To break the limitation of classic ASF distribution law, a part of olefin was added into the reaction with the syngas to enhance the selectivity of C8-C16 selectivity, suppressing the formation rate of lighter hydrocarbons. The employed bimodal catalyst exhibited higher activity and higher selectivity than the uni-modal catalyst. It was clarified that the mesopores of the bimodal catalyst accelerated the mass transfer efficiency because the reactants and products here were heavier than those in conventional slurry-phase Fischer-Tropsch synthesis. Simultaneously, micropores of the bimodal catalyst realized the high dispersion of the supported cobalt particles, tuning the balance between dispersion and reduction degree of the supported cobalt. ZrO2 acted as not only building blocks for the micropores of the bimodal spatial structure, but also as a promoter for Co/SiO2 Fischer-Tropsch synthesis catalyst chemically. The comprehensive effect derived from bimodal spatial effect and ZrO2 promoter effect realized the high activity of the Co/ZrO2-SiO2 bimodal catalyst. With the aid of the added 1-decene, new C-C bond formation was initiated and more carbene was connected to 1-decene, resulting in the boosted C8-C16 selectivity.
    x

    Readers Who Read This Article Also Read

    1. Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight Journal of the Japan Institute of Energy Vol.93(2014), No.2
    2. Study on an HCCI Engine fueled by Biomass Gas (Effect of Inhomogeneity of Premixture) Journal of the Japan Institute of Energy Vol.93(2014), No.2
    3. Synthesis Gas Production via Non-catalytic and Catalytic Gasification of Lignin with High-moisture Content Journal of the Japan Institute of Energy Vol.93(2014), No.7
  • Effect of Hydrothermal Reaction Conditions on Filtration Performance of Sludge

    pp. 119-126

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.93.119

    Hydrothermal t reatment of sludge was carried out, and the effect of hydrothermal conditions such as treatment temperature and treatment period on the filtration performance of the treated sludge was evaluated. The properties of the treated sludge were also analyzed by particle size distribution measurements, pH, and ζ potential, in order to understand the physical filtration mechanism. An increase in treatment temperature significantly improved the filtration capability of the treated sludge. The length of the treatment period also affected the filtration performance; the filtration rate of the sludge subjected to a longer treatment period was increased. Despite a decrease in the particle size of the treated sludge during high-temperature hydrolysis treatment, the filtration capability improved with an increase in the hydrothermal treatment temperature. Significant agglomeration of the treated sludge was not observed, and the agglomeration effect on the filtration performance was fairly small. In addition, the slurry concentration related to the decomposition of organic substances exhibited a significant influence on filtration resistance.
    x

    Readers Who Read This Article Also Read

    1. Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight Journal of the Japan Institute of Energy Vol.93(2014), No.2
    2. Study on an HCCI Engine fueled by Biomass Gas (Effect of Inhomogeneity of Premixture) Journal of the Japan Institute of Energy Vol.93(2014), No.2
    3. Synthesis Gas Production via Non-catalytic and Catalytic Gasification of Lignin with High-moisture Content Journal of the Japan Institute of Energy Vol.93(2014), No.7

Article Access Ranking

23 May. (Last 30 Days)

  1. Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel ISIJ International Vol.62(2022), No.2
  2. Comparison of Oxidation Behavior of Various Reactive Elements in Alloys during Electroslag Remelting (ESR) Process: An Overview ISIJ International Advance Publication
  3. Dissolution Kinetics of Synthetic FeCr2O4 in CaO–MgO–Al2O3–SiO2 Slag ISIJ International Vol.62(2022), No.4
  4. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of MgO Source on Phase Formation during Heating ISIJ International Vol.62(2022), No.4
  5. Interaction Coefficients of Mo, B, Ni, Ti and Nb with Sn in Molten Fe–18mass%Cr Alloy ISIJ International Vol.62(2022), No.3
  6. Phenomenological Understanding about Melting Temperature of Multi-Component Oxides Tetsu-to-Hagané Vol.108(2022), No.4
  7. Ironmaking Using Municipal Solid Waste (MSW) as Reducing Agent: A Preliminary Investigation on MSW Decomposition and Ore Reduction Behavior ISIJ International Advance Publication
  8. A Novel Process for Separation of Magnetite and Phosphorous Phases from a CaO–SiO2–FeO–P2O5 Slag ISIJ International Advance Publication
  9. Removal of Inclusions using Swirling Flow in a Single-Strand Tundish ISIJ International Advance Publication
  10. Influence of Acicular Ferrite Microstructure on Toughness of Ti-Rare Earth Metal (REM)-Zr Killed Steel Tetsu-to-Hagané Vol.108(2022), No.5

Search Phrase Ranking

23 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. galvannealing
  5. jet impingement
  6. jet impingement + cooling + runout table
  7. nitrogen
  8. refractory
  9. steel
  10. valve spring steel