Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 75 (1996), No. 5

  • The Estimation of the Energy Demand and Supply Structure of China

    pp. 333-342

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.75.333

    Based on our previous study of the Chinese energy structure up to the year 2010, the impact of energy supply related costs, such as energy price and energy conversion capital cost, on the energy supply and demand structure in China to the year 2025 was evaluated. To simplify the analysis, the total energy system cost was minimized using linear programming techniques.
    As a result of thisstudy, it was clarifed that if crude oil imports to China were limited to 200Mtoe/year, which corresponds to the quantity imported by Japan in 1990, coal liquefaction technology would be introduced at ca. 2020, as the domestic crude oil supply would have been depleted by that time . To meet gasoline demand, a larger quantity of coal must be liquefied because the gasoline fraction in oil fromcoal liquefaction is smaller than that of crude oil. But simultaneously the consumption of raw coal in the final energy demand sectors, the industry and the residential sectors would decrease because gas and heavy oil produced by coal liquefaction would be used in those sectors.
  • Effects of Iron/Sulfur Catalyst and Solvent Property on Yields and Hydrogen Transfer of Victorian Brown Coal Liquefaction

    pp. 343-350

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.75.343

    Effects of the amount of iron/sulfur catalyst on yields and hydrogen transfer of Victorian brown coal were investigated using two kinds of process solvents derived from the two-stage brown coal liquefaction (BCL) process; one is a solvent recycled in primary hydrogenation (PY-S, non-hydrogen donor solvent), and the other is a solvent recovered from secondary hydrogenation over Ni-Mo catalyst (SD-S, hydrogen donor solvent). In addition, the influence of hydrogen pressure and reaction time were also investigated using these solvents in the presence of the catalyst.
    SD-S was effective under non-catalytic and lower hydrogen pressure conditions compared with PY-S, but distillate yield was low under these conditions. On the other hand, PY-S provided higher distillate yield and hydrogen efficiency (defined by ratio of distillate yield to amount of hydrogen transferred to all liquefaction products) than SD-S under the condition of high hydrogen pressure and high catalyst concentration. These results indicate that the effects of the catalyst on liquefaction reaction is small in hydrogen donor solvent, and non-donor solvent is effective under severe conditions. The hydrogen efficiency increased with increases in pressure and catalyst concentration, and showed a peak at the optimum reaction time, which depended on the conditions and solvent properties.
  • Development of Hot Gas Cleanup Technology for IGCC

    pp. 351-360

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.75.351

    IGCC systeme are expected to be of practicable use in the near future, in view of its prominent environmental compatibility and higher thermal energy efficiency. The highest themal efficiency is achievable when the gas cleanup is conducted at a high temperature and pressure. To make the most of these characteristics of high thermal efficiency that is associated with this IGCC, development of hot gas cleanup technology is essential.
    IGC Association installed a 200t/d pilot plant in 1990 at Nakoso site, and a hot gas cleanup facility that is composed of the fluidized-bed desulfurization unit and the granular bed dust collector has been operating. Also, Fixed-bed type and Moving-bed type hot gas cleanup facilities were installed in 1993. The characteristics of desulfurization and dust removal were investigated using these facilities. Sulfur and dust concentration in the clean gas were under the target value. From its result, we confirmed that all the 3 types hot gas cleanup processes have high performance.

Article Access Ranking

17 Jan. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. In situ Observation of Reduction Behavior of Multicomponent Calcium Ferrites by XRD and XAFS Tetsu-to-Hagané Advance Publication
  3. In-Situ Observation Experimental Study on the Agglomeration and Dispersion of Particles at the Interface of High-temperature Melts ISIJ International Advance Publication
  4. Preface to the Diamond Jubilee Issue on “Selected Topics in Iron and Steel and Their Processing toward the New Steel Age” ISIJ International Vol.60(2020), No.12
  5. Development and Prospects of Refining Techniques in Steelmaking Process ISIJ International Vol.60(2020), No.12
  6. Improved Hydrogen Embrittlement Resistance of Steel by Shot Peening and Subsequent Low-temperature Annealing ISIJ International Advance Publication
  7. Effects of Residual Stress on Hydrogen Embrittlement of a Stretch-Formed Tempered Martensitic Steel Sheet ISIJ International Advance Publication
  8. Mathematical Modeling on Transient Multiphase Flow and Slag Entrainment in Continuously Casting Mold with Double-ruler EMBr through LES+VOF+DPM Method ISIJ International Advance Publication
  9. Hydrogen Absorption Behavior and Absorbed Hydrogen Trapping Sites in Rolling Contact Fatigue ISIJ International Advance Publication
  10. Review on the High-Temperature Thermophysical Properties of Continuous Casting Mold Fluxes for Highly Alloyed Steels Tetsu-to-Hagané Vol.107(2021), No.1

Search Phrase Ranking

17 Jan. (Last 30 Days)

  1. blast furnace
  2. 西山記念技術講座
  3. blast furnace permeability
  4. blast furnace productivity
  5. j. f. elliott
  6. blast furnace burden distribution
  7. bottom dross
  8. carbon-containing pellet
  9. cog blast furnace injection
  10. cr2o3 al2o3