Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 78 (1999), No. 6

  • Scale-up of Advanced Low NOx and High Turndown Pulverized Coal Burner

    pp. 404-415

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.78.404

    The specific low NOx burner, which is enabled to reduce both NOx and unburned carbon extremely and to perform the stable combustion at 20% load as like an oil burner, has been developed with a small size burner whose coal feed rate is 0.12 t/h in the previous study. To apply this burner to utility boilers, the influence of burner capacity on the combustion characteristics was investigated by comparison between the small burner (0.12 t/h) and a large burner (1.5 t/h) in this paper. The concept of this burner is follows. Coal particle is concentrated at outside of primary air nozzle by centrifugal force, and the coal concentration is controlled by a ring. At the exit of nozzle, the swirl of primary air is inhibited by straightener to reduce NOx efficiently.
    The swirl at the burner exit decreased with the increase of the straightener coefficient, which is a ratio of the gross area of the straightener to the cross section area of the primary pipe. When the straightener coefficient became greater than 1.2, the swirl was inhibited completely as same as 0.12 t/h burner. When the pulverized coal concentration control ring was placed close to the exit of nozzle, the local concentration of pulverized coal rose 1.7 times as high as the mean concentration in primary air. With this arrangement, the combustion flame kept stable at lower load and the minimum load of the burner was improved to 20% as like an oil burner. The unburned carbon in the fly ash was reduced very efficiently with a little increase of the NOx emission at lower load by controlling the coal concentration higher.
  • Properties and Residual Activities of Iron Based Catalyst after Direct Coal Liquefaction

    pp. 416-427

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.78.416

    Liquefaction tests of Yallourn coal with iron based catalyst and elemental sulfur were carried out by using 0.1t/d BSU (Bench Scale Unit) to investigate the influence of the decrease in catalyst loading on oil yield. The properties of iron sulfide in CLB (Coal Liquid Bottom), recovered from the reactor after the coal liquefaction, were analyzed by powder X-ray Diffraction method with ldeg./min of scanning rate. It appeared that H2S concentration above lvol% in the gas phase was required to suppress the troilite (FeS) formation, keeping the pyrrhotite (Fe1-xS) on a smaller crystallite size. The liquefaction activities among the fresh and used catalyst (CLB-THFI) were strongly dependent on the crystallite size of pyrrhotite, indicating that the troilite was less active than pyrrhotite.
    γ-FeOOH catalyst had an excellent catalytic activity among the iron based catalysts due to the transformation into pyrrhotite with smaller crystallite size. It was concluded that the catalyst deactivation was suppressed by keeping the H2S concentration at lvol% in the gas phase, resulted in a successful reduction of γ-FeOOH catalyst loading down to 0.3 wt% daf as Fe through the bottom recycle in the BCL (Brown Coal Liquefaction) process.

Article Access Ranking

07 Dec. (Last 30 Days)

  1. Heat conduction through different slag layers in mold. Thermal conductivity measurement of commercial mold fluxes ISIJ International Advance Publication
  2. Deformation of Non-metallic Inclusions in Steel during Rolling Process: A Review ISIJ International Vol.62(2022), No.11
  3. Activity of Chromium Oxide in Calcium Silicate Bearing Molten Slag for Highly Clean Chromium Steel Refining Process ISIJ International Advance Publication
  4. Effects of basicity and Al2O3 content on the crystal structure of silico-ferrite of calcium and aluminum ISIJ International Advance Publication
  5. Behavior and kinetic mechanism analysis of dissolution of iron ore particles in HIsmelt process based on high-temperature confocal microscopy ISIJ International Advance Publication
  6. Corrections of the figure in the paper “Effect of Cerium and Magnesium Addition on Evolution and Particle Size of Inclusions in Al-killed Molten Steel” [ISIJ International, Vol. 62 (2022), No. 9, pp. 1852-1861] ISIJ International Vol.62(2022), No.11
  7. Precipitation Behavior of Magnetite Phase during Modified Nickel Slag Treated by Molten Oxidation ISIJ International Advance Publication
  8. A shallow neural network for recognition of strip steel surface defects based on attention mechanism ISIJ International Advance Publication
  9. Characterization and Control of Secondary Phase Precipitation of Nb–V–Ti Microalloyed Steel during Continuous Casting Process ISIJ International Vol.62(2022), No.11
  10. Improvement of Sinter Productivity and Qualities by Placing Low Slag Green Pellet at Lower Layer of Sinter Packed Bed ISIJ International Vol.62(2022), No.11

Search Phrase Ranking

07 Dec. (Last 30 Days)

  1. blast furnace
  2. converter slag
  3. si-killed spring steel
  4. 高温変形抵抗
  5. 5%nickel
  6. 钢渣脱磷
  7. coatings hot formed steel
  8. free lime
  9. secondary cooling billet
  10. steel