Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 82 (2003), No. 1

  • Sulfur Form in Coal and SO2 Emission Behavior at AFBC Plant

    pp. 48-56

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.82.48

    This paper reports the results of an investigation on SO2 formation from sulfur in fuel (Fuel-S) and SO2 capture by limestone in a bench-scale bubbling fluidized bed combustor. Conversion of fuel-S to S in ash (ash-S), S in char (Char-S) and S in volatile matter (Volatile-S) during pyrolysis and combustion was experimentally evaluated under fluidized bed combustion condition. The formation of SO2 from fuel-S in a fluidized bed consisted of sand, which was inert for SO2 capture, indicated that SO2 was formed from char-S and volatile-S and the contribution of ash-S played only minor role in SO2 formation.
    Under limestone feed conditions, the emission of SO2 was strongly dependent on conversion of fuel-S to char-S during pyrolysis, whereas conversion to volatile-S had little influence on SO2 emission. This implies that the sulfur in the volatile matter is oxidized at the bottom of the bed and most part of SO2 from volatile-S is captured in the dense bed. In contrast, char-S is considered to be oxidized to SO2 throughout the bed, thus the SO2 from char formed in the vicinity of the bed surface is considered to escape from the bed without being captured by limestone since the contact time is short. These results suggest that the conversion of combustible sulfur (char-S+volatile-S) to char-S is very important to predict the SO2 emission from bubbling fluidized bed combustors under limestone feed conditions.
    x

    Readers Who Read This Article Also Read

    1. Changes of Homologue Profiles of PCDD/Fs in Waste Incineration in a Laboratory-Scale Fluidized-Bed Reactor Journal of the Japan Institute of Energy Vol.82(2003), No.2
    2. Reduction of Electricity Consumption and CO2 Emissions by Introduction of Information Technology (IT) Journal of the Japan Institute of Energy Vol.82(2003), No.1
    3. Burnt Gas Characteristics in Catalytic Combustion of Methane/Air Mixture Journal of the Japan Institute of Energy Vol.82(2003), No.2
  • Reduction of Electricity Consumption and CO2 Emissions by Introduction of Information Technology (IT)

    pp. 57-63

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.82.57

    Electricity consumption in the Internet, electronic network, in Japan was calculated with statistics for 1998. Methodologies to allocate the electricity consumption to each service provided by Internet were proposed. Then, electricity consumption and CO2 emissions associated with downloading 1 CD of music by Internet, especially, using dialup, were investigated. In addition, CO2 emissions associated with distributing 1 CD of music by ordinal compact disc were investigated and compared with those by Internet. CO2 emissions for downloading 1 CD of music by Internet were dependent on transmission speed, 0.79kg-CO2 if the communication speed is 64kbps (actual throughput: 51 kbps), and 0.16kg-CO2 if the communication speed is 1.5Mbps (actual throughput: 1.2Mbps). On the other hand, it was calculated that CO2 emissions for distributing 1 CD of music by ordinal compact disc was 0.33kg-CO2. CO2 emissions for downloading 1 CD of music by Internet will be reduced further with the increase in transmission speed.
    x

    Readers Who Read This Article Also Read

    1. Changes of Homologue Profiles of PCDD/Fs in Waste Incineration in a Laboratory-Scale Fluidized-Bed Reactor Journal of the Japan Institute of Energy Vol.82(2003), No.2
    2. Burnt Gas Characteristics in Catalytic Combustion of Methane/Air Mixture Journal of the Japan Institute of Energy Vol.82(2003), No.2
    3. Hydrothermal Pulping of Wet Biomass as Pretreatment for Supercritical Water Gasification Studied Using Cabbage as a Model Compound Journal of the Japan Institute of Energy Vol.82(2003), No.2

Article Access Ranking

03 Feb. (Last 30 Days)

  1. Automatic Ultrasonic Testing of Non-metallic Inclusions Detectable with Size of Several Tens of Micrometers Using a Double Probe Technique along the Longitudinal Axis of a Small-diameter Bar ISIJ International Vol.61(2021), No.1
  2. Effect of microstructure on mechanical properties of quenching & partitioning steel ISIJ International Advance Publication
  3. Role and Potential of Aluminium and Its Alloys for a Zero-Carbon Society MATERIALS TRANSACTIONS Vol.64(2023), No.2
  4. Preface to the Special Issue on “Advanced Carbon Utilization Technologies and Processes for Sustainably Prosperous Society” ISIJ International Vol.62(2022), No.12
  5. A novel way refining the partially reverted globular austenite in reversion from martensite ISIJ International Advance Publication
  6. Soft Sensors and Diagnostic Models Using Real Time Data of Blast Furnaces at Tata Steel ISIJ International Vol.63(2023), No.1
  7. Interaction Coefficients of Cu and Sn with Mn in Molten Iron at 1873 K ISIJ International Vol.62(2022), No.12
  8. Influence of Large Amount of Hydrogen Containing Gaseous Reductant Injection on Carbon Consumption and Operation Conditions of Blast Furnace - Development of Low Carbon Blast Furnace Operation Technology by using Experimental Blast Furnace: part II - ISIJ International Vol.62(2022), No.12
  9. Influence of the Slag Rim on the Heat Transfer Behavior of a Mold ISIJ International Advance Publication
  10. Application of Variable Gauge Rolling Technology for Plate to Reduce the Head Impact ISIJ International Advance Publication

Search Phrase Ranking

03 Feb. (Last 30 Days)

  1. blast furnace
  2. process
  3. aaa
  4. tetsu
  5. aaaa
  6. a
  7. aa
  8. orange peel
  9. ...
  10. experimental study on