Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 80 (2001), No. 3

  • Combustion Characteristics in High Temperature Air Combustion (I)

    pp. 165-176

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.80.165

    High Performance Industrial Furnace Development Project has been proceeding by JIFMA entrusted from NEDO to clear 30% reduction of energy, 20% downsizing and very low NOx. We achieved completely the targets and verified the performance in as many as 150 examples of practical plants which are variety of reheating furnaces, heat treatment furnaces and melting furnaces in the field test project.
    Central to this combustion technology is high temperature air combustion technology using regenerative combustion system that preheats the air fed into the combustion furnace to over 1, 000°C, much higher compared with before and jets fuel into this high speed turbulent flow, then this means to preheat air over auto ignition temperature of fuel properties and to combust diluted by ample exhausted gas.
    This technology has many functions to eliminate local high temperature regions, to reduce temperature differences in the furnace, to attain high efficient heat transfer through an increase of the mean temperature inside the furnace without any local high temperature to optimize heating algorithm by some independent heat control mechanism and to control NOx by heating control. We describe combustion characteristics in high temperature air combustion compared with conventional combustion.
  • Combustion Characteristics in High Temperature Air Combustion (II)

    pp. 177-183

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.80.177

    High temperature air combustion that uses regenerative burner has many characteristics as follows,
    (1) Self ignited combustion, (2) Unnecessary for flame holding measure, (3) The state and shape of flame has remarkable change by how to mix fuel and air, (4) Notwithstanding using highly preheated air, instantaneous maximum flame temperature is low, (5) Flame temperature fluctuation is small, (6) Diluted combustion by burned gas or low oxygen combustion generates, (7) Reaction zone thickness in low oxygen combustion becomes thick. Report (I) shows high efficient heat transfer based on temperature raising, then this report (II) shows the characteristics of temperature equalization and low NOx.

Article Access Ranking

07 May. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. Steam Reforming of Methane on Sponge Iron: Influence of Gas Composition on Reaction Rate ISIJ International Vol.61(2020), No.1
  3. Preface to the Special Issue on “Toward Suppression of Hydrogen Absorption and Hydrogen Embrittlement for Steels” ISIJ International Vol.61(2021), No.4
  4. Automatic Ultrasonic Testing of Non-metallic Inclusions Detectable with Size of Several Tens of Micrometers Using a Double Probe Technique along the Longitudinal Axis of a Small-diameter Bar ISIJ International Vol.61(2020), No.1
  5. Rapid Method to Measure Hydrogen Diffusion Coefficient in Metal Using a Multi-sine Wave Signal ISIJ International Vol.61(2021), No.4
  6. Three-dimensional Investigations of Non-metallic Inclusions in Stainless Steels before and after Machining ISIJ International Advance Publication
  7. Review of Positron Lifetime Studies of Lattice Defects Formed during Tensile Deformation in a Hydrogen Environment ISIJ International Vol.61(2021), No.4
  8. Method for Evaluating Hydrogen Embrittlement of High-Strength Steel Sheets Considering Press Formation and Hydrogen Existence State in Steel ISIJ International Vol.61(2021), No.4
  9. A Visualization Method of Quantifying Carbon Combustion Energy in the Sintering Packed Bed ISIJ International Advance Publication
  10. Effects of Stress and Plastic Strain on Hydrogen Embrittlement Fracture of a U-bent Martensitic Steel Sheet ISIJ International Vol.61(2021), No.4

Search Phrase Ranking

07 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. coke oven gas injection
  4. ultrasonic inclusion
  5. blast furnace productivity
  6. continuous casting of electrical steel
  7. slag
  8. activities in the liquid solution sio2-cao- mgo-al2o3 at 1600℃
  9. activity coefficient of ti in liquid iron
  10. cokes gasification