Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 80 (2001), No. 3

  • Combustion Characteristics in High Temperature Air Combustion (I)

    pp. 165-176

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.80.165

    High Performance Industrial Furnace Development Project has been proceeding by JIFMA entrusted from NEDO to clear 30% reduction of energy, 20% downsizing and very low NOx. We achieved completely the targets and verified the performance in as many as 150 examples of practical plants which are variety of reheating furnaces, heat treatment furnaces and melting furnaces in the field test project.
    Central to this combustion technology is high temperature air combustion technology using regenerative combustion system that preheats the air fed into the combustion furnace to over 1, 000°C, much higher compared with before and jets fuel into this high speed turbulent flow, then this means to preheat air over auto ignition temperature of fuel properties and to combust diluted by ample exhausted gas.
    This technology has many functions to eliminate local high temperature regions, to reduce temperature differences in the furnace, to attain high efficient heat transfer through an increase of the mean temperature inside the furnace without any local high temperature to optimize heating algorithm by some independent heat control mechanism and to control NOx by heating control. We describe combustion characteristics in high temperature air combustion compared with conventional combustion.
  • Combustion Characteristics in High Temperature Air Combustion (II)

    pp. 177-183

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.80.177

    High temperature air combustion that uses regenerative burner has many characteristics as follows,
    (1) Self ignited combustion, (2) Unnecessary for flame holding measure, (3) The state and shape of flame has remarkable change by how to mix fuel and air, (4) Notwithstanding using highly preheated air, instantaneous maximum flame temperature is low, (5) Flame temperature fluctuation is small, (6) Diluted combustion by burned gas or low oxygen combustion generates, (7) Reaction zone thickness in low oxygen combustion becomes thick. Report (I) shows high efficient heat transfer based on temperature raising, then this report (II) shows the characteristics of temperature equalization and low NOx.

Article Access Ranking

15 Dec. (Last 30 Days)

  1. Coating Film Profiles Generated by Fluctuating Location of the Wiping Pressure and Shear Stress ISIJ International Advance Publication
  2. Numerical Simulation of Decarburization Kinetics for Fe-3%Si Steel during Annealing ISIJ International Advance Publication
  3. Fusion Zone Microstructural Evolution of Al-10% Si Coated Hot Stamping Steel during Laser Welding ISIJ International Advance Publication
  4. Effects of Coke Ash on Erosion of Carbon Composite Brick ISIJ International Advance Publication
  5. Influence of Agitating Conditions on Agglomeration and Collapse of Iron Ore Mixture ISIJ International Vol.58(2018), No.11
  6. Mechanical Property of Ultrafine Elongated Grain Structure Steel Processed by Warm Tempforming and Its Application to Ultra-High-Strength Bolt Tetsu-to-Hagané Advance Publication
  7. Change in Composition of Inclusions through the Reaction between Al-killed Steel and the Slag of CaO and MgO Saturation ISIJ International Advance Publication
  8. A Review of Fluorine-free Mold Flux Development ISIJ International Vol.58(2018), No.11
  9. A Kinetic Model on Oxygen Transfer at a Steel/Slag Interface under Effect of Interfacial Tension ISIJ International Vol.58(2018), No.11
  10. Fabrication of Superoleophobic Surface on Stainless Steel by Hierarchical Surface Roughening and Organic Coating ISIJ International Advance Publication

Search Phrase Ranking

15 Dec. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. 鉄と鋼
  5. automation in steel industry
  6. coil break
  7. depression in continuous casting of billet
  8. hot forming
  9. continous annealing
  10. cr(vi)