Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 74 (1995), No. 10

  • Methodology of Emissions Inventory Preparation and Environmental Impact Evaluation

    pp. 874-881

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.74.874

    Reviewed in this paper are the methodologies used for emissions inventory preparation and the environmental impact evaluation of emissions from industrial production and/or technologies utilization. The methodologies utilized for emissions inventories can be categorized into two approaches: the bottom-up approach, and the analytical approach using input-output tables. Currently, the environmental impacts are evaluated by the classification, such as “Greenhouse effect” and “Ozone layer depletion”, and aggregation method, whose value are calculated by the product of the emissions volume/mass and the weighting factors. The weighting factors are presently estimated based on scientific knowledge as far as possible. In order to evaluate environmental impacts on the different classifications in the same unit, the method of the calculation of environmental costs has been the focus of attention recently. Environmental costs are the parts of the externality, which is not reflected on the present market prices, of the industrial products and/or technologies. In the future, we should consider not only environmental impacts caused by the emissions but also other externality such as “Resource depletion” and “Land use”.
  • A Numerical Study on a Single Char Particle Combustion Around Ash Melting Temperature

    pp. 882-888

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.74.882

    The ash layer diffusion controlling model and a finite difference method were successfully employed to simulate a single char particle combustion at around ash melting temperature. The numerical modeling was conducted under the operation conditions similar to the author's previous experiment. It was found that the numerical temperature profile in a burning char particle was strongly influenced by the ash layer heat conductivity. By considering the ash layer heat conductivity was varied with time, the simulated particle time temperature profiles agreed well with the experimental results. And the optimum value of ash layer heat conductivity to fit the experimental temperature variation with time was found to be increased with ash content and maximum combustion temperature. The agreement between the simulation and experimental results proved the validation of the numerical modeling. The numerical study also suggested that the smaller particle reaches its peak temperature quicker than larger particles and gives the higher peak temperature.
  • Evaluation of the Ignition Property of a Diesel Fuel Using the Autoignition Temperature Test

    pp. 889-894

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.74.889

    In order to obtain some information on ignition property of diesel fuels, we have attempted to determine autoignition temperatures of various diesel fuels and to compare those with their cetane numbers. As a result it was shown that the autoignition temperature of the diesel fuels should have a tendency to decrease with an increase in their cetane number and that the addition of the cetane number improving agents could make autoignition temperatures lower. We suggest that the autoignition temperature test should be useful screening one to evaluate the cetane number and the cetane number improvement of diesel fuels.

Article Access Ranking

26 Jun. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. Hydrogen Embrittlement Susceptibility Evaluation of Tempered Martensitic Steels Showing Different Fracture Surface Morphologies ISIJ International Advance Publication
  3. Production and Technology of Iron and Steel in Japan during 2018 ISIJ International Vol.59(2019), No.6
  4. Effect of a Zn Interlayer on the Adhesion Strength and Corrosion Resistance of Zn–Mg Coated TRIP Steel ISIJ International Vol.59(2019), No.6
  5. A Kinetic Model of Mass Transfer and Chemical Reactions at a Steel/Slag Interface under Effect of Interfacial Tensions ISIJ International Vol.59(2019), No.5
  6. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) Iron Ore Sinter Bonding Phase Formation: Effects of Titanium on Crystallisation during Cooling ISIJ International Vol.59(2019), No.6
  7. Evaluation of the Structure and Strength of Coke with HPC Binder under Various Preparation Conditions ISIJ International Advance Publication
  8. Recycling of Blast Furnace Sludge to the Blast Furnace via Cold-Bonded Briquettes: Evaluation of Feasibility and Influence on Operation ISIJ International Advance Publication
  9. Improvement of Sinter Strength and Reducibility through Promotion of Magnetite Ore Oxidation by Use of Separate Granulating Method ISIJ International Vol.59(2019), No.5
  10. Effects of Surface Microstructure on Selective Oxidation Morphology and Kinetics in N2 + 5%H2 Atmosphere with Variable Dew Point Temperature ISIJ International Vol.59(2019), No.5

Search Phrase Ranking

26 Jun. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. assimilation
  5. bubbling ladle
  6. inclusions
  7. isij xafs
  8. lme
  9. phosphatability
  10. phosphate treatment