Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 98 (2019), No. 4

  • Influence between Desulfurization and Defluorination Reactions Using Ca(OH)2 in the Simulated Coal-briquettes

    pp. 44-51

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.44

    SO2 and HF emitted from coal-combustion is a serious problem of indoor air pollution in China. Powdery coal mixed with Ca(OH)2, which is called coal-briquette, was suggested to control SO2 and HF emissions from coal combustion, but it is thought that desulfurization and defluorination occur at the same time during the combustion of coal-briquette. The objective of this study is to clarify the interaction of desulfurization and defluorination reactions during the coal-briquette combustion. This research work focuses on the removal of SO2 and HF from coal combustion. Carbonaceous graphite, muscovite and FeS2 are used to make simulated briquettes, as carbonaceous graphite provides carbon, muscovite contains fluorine and FeS2 contains sulfur. Ca(OH)2 is used as an additive to the simulated coal-briquettes to remove SO2 and HF. As the result, it was found that HF generation is a first-order reaction and that existing sulfur in the simulated coal-briquettes has an influence on defluorination efficiency. The experimental result showed that the emitted SO2 concentration increased with an increase of fluoride content in the simulated coal-briquettes. Further, our data showed that if pyrolysis of fluoride (muscovite) proceeds in the simulated coal-briquettes combustion, desulfurization efficiency decreases.
  • Estimating the Potential Capacity of Introducing Gas Engine Cogeneration in Non-Residential Building Using Geographic Information System

    pp. 52-61

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.52

    The 5th Strategic Energy Plan indicates that the introduction of cogeneration will be promoted. When cogeneration is introduced widely, it is desirable to disseminate it at a level aligned with the energy demand and potential capacity of a given region. The objective of this study is to estimate the potential capacity for both achieving energy conservation and securing the electric power necessary for business continuity in the commercial sector using cogeneration. Further, this study attempts to estimate by region the potential capacity contributing to improvement in electrical system power flow in general gas provider supply areas. Building energy demand and cogeneration energy conservation performance were analyzed using “BEST”, a comprehensive building energy simulation tool, referring to standard building specifications in FY2013 and based on analysis results in energy conservation plans submitted to administrative agencies with jurisdiction. It is possible to estimate the usage and the total floor area of buildings located in a given region, and to determine location information by using a geographic information system (GIS). Further, by using the GIS, it is possible to determine general gas provider supply areas and the regions where cogeneration can contribute to improvement in electrical system power flow when distributed power is introduced. As a result of the estimation, the potential capacity for both achieving energy conservation and securing the electric power necessary for business continuity is approximately 24.8 GW in the business sector nationwide, and approximately 14.9 GW potential capacity will contribute to improvements in electrical system power flow in general gas provider supply areas.
  • Techno-economic Assessment of Hydrogen Energy in the Electricity and Transport Sectors Using a Spatially-disaggregated Global Energy System Model

    pp. 62-72

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.62

    Hydrogen (H2) receives much attention to mitigate climate change and strengthen energy security. This study analyzed the economic viability of H2 energy with a focus on the electricity and transport sectors, employing a spatially-disaggregated global energy system model. The simulated period is from 2015 to 2050. The results suggest that, in addition to strict CO2 regulation policies, significant cost reductions of H2 production technologies would be prerequisite to accelerate H2-fueled power generation globally. By contrast, deployment of fuel-cell vehicle appears more sensitive to vehicle price, rather than the H2 supply costs. Among H2 production processes, gasification of coal and reformation of natural gas, combined with carbon capture and storage, are estimated to be cost-efficient, implying opportunities for H2 trade between coal and gas resource countries and energy consumers. Yet, again, improved economics are necessary for maritime H2 transportation, including liquefied H2; otherwise, H2 trade would be limited to pipeline. If maritime H2 trade becomes economically viable, natural gas and coal in Australia could be competitive feedstock for Japan. Long-term policies to support research and development are crucial to commercialize H2 supply system.
  • Table of Contents (in English)

    p. 9804tce_1

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.9804tce_1

  • Table of Contents (in Japanese)

    p. 9804tcj_1

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.9804tcj_1

Article Access Ranking

26 May. (Last 30 Days)

  1. Numerical Investigation of Effect of Casting Speed on Flow Characteristics of Molten Steel in Multistrand Tundish ISIJ International Advance Publication
  2. Preface to the Special Issue on “Innovation for Ironmaking Systems Combined with Low-Carbon, Material Recycle and Energy Saving Technologies” ISIJ International Vol.59(2019), No.4
  3. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Advance Publication
  4. Ensemble Prediction of Tundish Open Eyes Using Artificial Neural Networks ISIJ International Advance Publication
  5. Effects of Surface Microstructure on Selective Oxidation Morphology and Kinetics in N2 + 5%H2 Atmosphere with Variable Dew Point Temperature ISIJ International Vol.59(2019), No.5
  6. Effect of Nut Coke Addition on Physicochemical Behaviour of Pellet Bed in Ironmaking Blast Furnace ISIJ International Vol.59(2019), No.5
  7. CO2 Emission Reduction and Exergy Analysis of SMART Steelmaking System Adaptive for Flexible Operating Conditions ISIJ International Vol.59(2019), No.4
  8. Dynamic Control of Flatness and Elongation of the Strip in a Skin Pass Mill Tetsu-to-Hagané Vol.105(2019), No.5
  9. Internal Friction Behavior Associated with Martensitic Decomposition in Low-carbon Dual-phase Steel ISIJ International Advance Publication
  10. A Kinetic Model of Mass Transfer and Chemical Reactions at a Steel/Slag Interface under Effect of Interfacial Tensions ISIJ International Vol.59(2019), No.5

Search Phrase Ranking

26 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. deadman coke
  5. joo hyun park
  6. continuous casting
  7. gtaw tig pulsed feed wire
  8. mold flux, b2o3
  9. wire drawing
  10. a structurally-based viscosity model of the fully liquid slags in the cao-mgo-al2o3-feo-sio2 system