Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 98 (2019), No. 12

  • The Coordination Structure and Activity of Hollow Silica-alumina Composite Spheres for Hydrogen Evolution from Aqueous Ammonia Borane Solution

    pp. 312-317

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.312

    This work studied about the coordination structure and activity hollow silica-alumina composite spheres for acid-promoted hydrogen evolution from aqueous ammonia borane solution. The hollow spheres were fabricated by adjusting temperature and time for coating their shells on spherical polystyrene templates, following removal of the templates through calcination process. We investigated the influence on the coordination state of active aluminum species through the 27Al MAS NMR spectra and on activity for the hydrogen evolution. The NMR spectra indicated that both the ratios of active tetra-coordinated aluminum species and inactive hexa-coordinated aluminum species also increased with increase of the coating temperature, however, improvement of the activity was not observed despite the increase of the active aluminum species. The ratios of active tetra-coordinated aluminum species and inactive hexa-coordinated aluminum species were also controlled by adjusting the coating time, and the hollow spheres with both high ratio of active tetra-coordinated aluminum species and low ratio of inactive hexacoordinated aluminum species showed high activity for the hydrogen evolution. The highly active hollow spheres also included relatively high ratio of penta-coordinated aluminum atoms, suggesting that the active sites for the hydrogen evolution were also included in the penta-coordinated aluminum species.
  • A Mixed-unit Input-output Model for Renewable Heat Technologies: an Application to Employment Impact Assessment

    pp. 318-332

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.318

    In Japan, a large share of final energy demand is used for hot water and space heating and cooling in buildings. Therefore, it is important to consider how to meet the heat demand of residential and commercial sectors. Despite the potential benefits of renewable heat technologies, little study has been done to examine the effects of the introduction of them. The objective of the present study is to develop an input-output model for assessing environmental and socio-economic impacts of renewable heat technologies from a life cycle perspective. The developed input-output model covers three renewable heat systems, namely, solar thermal, ground source heat pump and wood boiler systems. Conventional heat systems are also considered for comparison purposes. The new 37 sectors are created and added to the Japanese input-output table for the year 2011. This study employs a mixed-unit input-output model. The output of the operation sectors is expressed in physical terms instead of monetary terms. Building thermal simulation software is used to calculate heat load. We conduct employment impact assessment using the developed input-output model. The results indicate that the introduction of renewable heat technologies induce employment shifts away from the fossil fuel-related sectors towards renewable sectors.
  • Ring and Rod Media Combination Effects on Continuous Pulverization by Tandem Ring Mill

    pp. 333-339

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.333

    In this study, scale-up and continuous pulverization of a vibration mill with ring media were promoted for pretreatment of lignocellulose biomass. In continuous pulverization, coarse powder that passes through the inside of the ring media without being crushed was generated. Then continuous pulverization with a ring and rod combination was examined to suppress the powder flow passing through the ring hole and to increase pulverization force. First, batch pulverization with the ring and rod combination was examined. Results demonstrate that filling the rod media inside the hole of the ring media improved the micronizing efficiency in large amounts of Japanese cedar powder and increased the saccharification efficiency during the initial stage of pulverization. Based on the results, continuous pulverization was examined. The powder flow suppression effect was fundamentally confirmed. Furthermore, powder properties by continuous pulverization were confirmed to be improved in median size and the enzymatic saccharification efficiency by the filling rate of rods from 40% to 50%. Therefore, the ring and rod combination was found to be effective for continuous pulverization using a tandem ring mill.
  • Demonstration of Using Bio-coke from Mixed Feedstock at General Waste Incineration Facilities and Cupola Furnaces

    pp. 340-346

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.340

    Bio-coke is carbon-neutral fuel, and expected for CO2 reduction method in some industries using coal coke and foundry coke. Municipal waste incineration facilities in Japan often use gasification melting furnaces due to their high environmental performance and ash volume reduction. Cupola furnaces are also widespread in foundry industry manufacturing ductile iron pipes, gas pipe, etc. This study aims to achieve two objectives: (1) development of effective and economic technology to produce bio-coke from mixed feedstock generated in Yokote City, Akita Prefecture (mainly rice husks, bark and mushroom bed) and (2) demonstration of reduction of CO2 emissions from gasification melting furnace and cupola furnace by using bio-coke as a substitute for coal coke and foundry coke. In the demonstration of using bio-coke at the gasification melting furnace, the coal coke consumption is reduced up to 51%. In the cupola furnace test, the foundry coke consumption is reduced about 5% by using bio-coke. However, some challenges of using bio-coke at the cupola (change of stack gas components, storage condition and mechanical strength, etc.) are identified.
  • Table of Contents (in English)

    p. 9812tce_1

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.9812tce_1

  • Table of Contents (in Japanese)

    p. 9812tcj_1

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.98.9812tcj_1

Article Access Ranking

07 Dec. (Last 30 Days)

  1. Heat conduction through different slag layers in mold. Thermal conductivity measurement of commercial mold fluxes ISIJ International Advance Publication
  2. Deformation of Non-metallic Inclusions in Steel during Rolling Process: A Review ISIJ International Vol.62(2022), No.11
  3. Activity of Chromium Oxide in Calcium Silicate Bearing Molten Slag for Highly Clean Chromium Steel Refining Process ISIJ International Advance Publication
  4. Effects of basicity and Al2O3 content on the crystal structure of silico-ferrite of calcium and aluminum ISIJ International Advance Publication
  5. Behavior and kinetic mechanism analysis of dissolution of iron ore particles in HIsmelt process based on high-temperature confocal microscopy ISIJ International Advance Publication
  6. Corrections of the figure in the paper “Effect of Cerium and Magnesium Addition on Evolution and Particle Size of Inclusions in Al-killed Molten Steel” [ISIJ International, Vol. 62 (2022), No. 9, pp. 1852-1861] ISIJ International Vol.62(2022), No.11
  7. Precipitation Behavior of Magnetite Phase during Modified Nickel Slag Treated by Molten Oxidation ISIJ International Advance Publication
  8. A shallow neural network for recognition of strip steel surface defects based on attention mechanism ISIJ International Advance Publication
  9. Characterization and Control of Secondary Phase Precipitation of Nb–V–Ti Microalloyed Steel during Continuous Casting Process ISIJ International Vol.62(2022), No.11
  10. Improvement of Sinter Productivity and Qualities by Placing Low Slag Green Pellet at Lower Layer of Sinter Packed Bed ISIJ International Vol.62(2022), No.11

Search Phrase Ranking

07 Dec. (Last 30 Days)

  1. blast furnace
  2. converter slag
  3. si-killed spring steel
  4. 高温変形抵抗
  5. 5%nickel
  6. 钢渣脱磷
  7. coatings hot formed steel
  8. free lime
  9. secondary cooling billet
  10. steel