Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 87 (2008), No. 10

  • Decomposition of Thiocyanate Ion by Sub- and Supercritical Water Oxidation

    pp. 840-845

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.87.840

    For the purpose of stable supply of energy while decreasing dependence of fossil fuels in the future, both clean coal technologies and environment load reduction technologies are extremely required to develop. For the development of clean-up system of sulfur-containing wastes from coal devoletilization process in coke oven, decomposition experiments of a thiocyanic ion, SCN-, in sub- and supercritical water were examined with oxygen and hydrogen peroxide as oxidizers at temperatures from 25 to 400 °C and at 25 MPa by a flow-through reactor. High-temperature water treatment in the presence of oxygen with O2/SCN- molar rario of 75 led to about 40 % decomposition of SCN- for 30 s at 350 °C. In contrast, the treatment in the presence of hydrogen peroxide with O2/SCN- molar rario of 30 led to complete decomposition of SCN- for 30 s at 200 °C. It was found that decomposition ratio of SCN- could be much improved with hydrogen peroxide as a oxidizer. These results show the clean-up system of sulfur-containing wastes can be made compact using sub- and supercritical water oxidation techniques.
  • A Study of Microbial Fuel Cell Using Wheat Bran

    pp. 846-851

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.87.846

    In recent years, recycling of organic waste has been needed in Japan. To make biogas and compost are usual ways of the recycling today. And a microbial fuel cell (MFC), a direct generator using microorganism from organic and inorganic compounds, has been investigated recently. Volatile fatty acid, food processing wastewater and landfill leachate were used to produce electricity by MFC in the past studies. But there is little knowledge about MFC using wheat bran. We tried to produce electricity by the MFC using wheat bran and succeeded to generate between 0.2V and 0.36V for 250 hour. The factors affecting MFC performance were investigated, we found that substrate concentration, a kind of mediator, ion concentration and electrode material could affect the MFC performance. We tested the discharge transient behavior of the MFC and fitted theoretically calculated values to observed values. By the fitting, we clarified the equivalent circuit constant, i.e., inner resistances and capacitor of the MFC.
  • Prediction of Pyrolysis Process for Wood and Grass Biomass by CPD Model

    pp. 852-861

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.87.852

    This paper presents new pyrolysis model of wood and grass biomass. It is named biomass-CPD model. A scheme of the Chemical Percolation Devolatilization (CPD) model which was used in numerical analysis of coal pyrolysis was applied to description of wood and grass biomass pyrolysis. Cellulose, hemicellulose and lignin which are three main components of wood and grass were modeled at first. A molecular structure of each component was determined from that of its monomer, and a rate constant of each component was determined from both the conventional model and the pyrolysis curve from experiment. The pyrolysis process of wood and grass biomass was expressed by a summation of that of cellulose, hemicellulose and lignin calculated from the developed model. The content of each component in wood and grass was predicted from the ultimate analysis and the proximate analysis of wood and grass. By using above-mentioned new method, the pyrolysis process and the yields of total volatiles and tar of wood and grass biomass was predicted by only values of biomass properties and pyrolysis conditions. From a comparison between calculation and experimental results, the predicted pyrolysis process and yields of total volatiles and tar of various wood and grass biomass pyrolyzed under various conditions are in good agreement with the experimental ones, and we show the validity of the biomass-CPD model.

Article Access Ranking

08 Jul. (Last 30 Days)

  1. Production and Technology of Iron and Steel in Japan during 2019 ISIJ International Vol.60(2020), No.6
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Numerical Simulation of Fluid Flow and Solidification in a Vertical Round Bloom Caster Using a Four-port SEN with Mold and Strand Electromagnetic Stirring ISIJ International Advance Publication
  4. Scheduling in Continuous Steelmaking Casting: A Systematic Review ISIJ International Vol.60(2020), No.6
  5. Sinter Pot for Temperature Measurement of the Top Layer during and After the Ignition ISIJ International Advance Publication
  6. Deoxidation of Electroslag Remelting (ESR) – A Review ISIJ International Vol.60(2020), No.6
  7. From Iron Ore to Crude Steel: Mass Flows Associated with Lump, Pellet, Sinter and Scrap Iron Inputs ISIJ International Vol.60(2020), No.6
  8. Taguchi Orthogonal Test on Granule Properties and Porosity Distribution in Sintering Bed using High-resolution X-ray Computed Tomography ISIJ International Vol.60(2020), No.6
  9. Tension Leveling Using Finite Element Analysis with Different Constitutive Relations ISIJ International Vol.60(2020), No.6
  10. Improvement in Reduction Behavior of Sintered Ores in a Blast Furnace through Injection of Reformed Coke Oven Gas ISIJ International Advance Publication

Search Phrase Ranking

08 Jul. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. electric arc furnace
  5. cao sio2 viscosity
  6. 17-7 ph
  7. cold formed bainitic steel
  8. hole expansion ratio
  9. big data
  10. cao