Journal of the Japan Institute of Energy
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 1882-6121
PRINT ISSN: 0916-8753

Journal of the Japan Institute of Energy Vol. 87 (2008), No. 10

  • Decomposition of Thiocyanate Ion by Sub- and Supercritical Water Oxidation

    pp. 840-845

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.87.840

    For the purpose of stable supply of energy while decreasing dependence of fossil fuels in the future, both clean coal technologies and environment load reduction technologies are extremely required to develop. For the development of clean-up system of sulfur-containing wastes from coal devoletilization process in coke oven, decomposition experiments of a thiocyanic ion, SCN-, in sub- and supercritical water were examined with oxygen and hydrogen peroxide as oxidizers at temperatures from 25 to 400 °C and at 25 MPa by a flow-through reactor. High-temperature water treatment in the presence of oxygen with O2/SCN- molar rario of 75 led to about 40 % decomposition of SCN- for 30 s at 350 °C. In contrast, the treatment in the presence of hydrogen peroxide with O2/SCN- molar rario of 30 led to complete decomposition of SCN- for 30 s at 200 °C. It was found that decomposition ratio of SCN- could be much improved with hydrogen peroxide as a oxidizer. These results show the clean-up system of sulfur-containing wastes can be made compact using sub- and supercritical water oxidation techniques.
    x

    Readers Who Read This Article Also Read

    1. Combustion Characteristics of Hydrogen in a Catalytic Fluidized Bed Journal of the Japan Institute of Energy Vol.86(2007), No.10
    2. Flame Characteristics in a Wick Combustion of GTL Kerosene Journal of the Japan Institute of Energy Vol.86(2007), No.10
    3. A Study on Evaluating Risk in CDM Journal of the Japan Institute of Energy Vol.86(2007), No.11
  • A Study of Microbial Fuel Cell Using Wheat Bran

    pp. 846-851

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.87.846

    In recent years, recycling of organic waste has been needed in Japan. To make biogas and compost are usual ways of the recycling today. And a microbial fuel cell (MFC), a direct generator using microorganism from organic and inorganic compounds, has been investigated recently. Volatile fatty acid, food processing wastewater and landfill leachate were used to produce electricity by MFC in the past studies. But there is little knowledge about MFC using wheat bran. We tried to produce electricity by the MFC using wheat bran and succeeded to generate between 0.2V and 0.36V for 250 hour. The factors affecting MFC performance were investigated, we found that substrate concentration, a kind of mediator, ion concentration and electrode material could affect the MFC performance. We tested the discharge transient behavior of the MFC and fitted theoretically calculated values to observed values. By the fitting, we clarified the equivalent circuit constant, i.e., inner resistances and capacitor of the MFC.
    x

    Readers Who Read This Article Also Read

    1. Combustion Characteristics of Hydrogen in a Catalytic Fluidized Bed Journal of the Japan Institute of Energy Vol.86(2007), No.10
    2. Flame Characteristics in a Wick Combustion of GTL Kerosene Journal of the Japan Institute of Energy Vol.86(2007), No.10
    3. A Study on Evaluating Risk in CDM Journal of the Japan Institute of Energy Vol.86(2007), No.11
  • Prediction of Pyrolysis Process for Wood and Grass Biomass by CPD Model

    pp. 852-861

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.3775/jie.87.852

    This paper presents new pyrolysis model of wood and grass biomass. It is named biomass-CPD model. A scheme of the Chemical Percolation Devolatilization (CPD) model which was used in numerical analysis of coal pyrolysis was applied to description of wood and grass biomass pyrolysis. Cellulose, hemicellulose and lignin which are three main components of wood and grass were modeled at first. A molecular structure of each component was determined from that of its monomer, and a rate constant of each component was determined from both the conventional model and the pyrolysis curve from experiment. The pyrolysis process of wood and grass biomass was expressed by a summation of that of cellulose, hemicellulose and lignin calculated from the developed model. The content of each component in wood and grass was predicted from the ultimate analysis and the proximate analysis of wood and grass. By using above-mentioned new method, the pyrolysis process and the yields of total volatiles and tar of wood and grass biomass was predicted by only values of biomass properties and pyrolysis conditions. From a comparison between calculation and experimental results, the predicted pyrolysis process and yields of total volatiles and tar of various wood and grass biomass pyrolyzed under various conditions are in good agreement with the experimental ones, and we show the validity of the biomass-CPD model.
    x

    Readers Who Read This Article Also Read

    1. Combustion Characteristics of Hydrogen in a Catalytic Fluidized Bed Journal of the Japan Institute of Energy Vol.86(2007), No.10
    2. Flame Characteristics in a Wick Combustion of GTL Kerosene Journal of the Japan Institute of Energy Vol.86(2007), No.10
    3. A Study on Evaluating Risk in CDM Journal of the Japan Institute of Energy Vol.86(2007), No.11

Article Access Ranking

23 Sep. (Last 30 Days)

  1. Formation and Evolution of Inclusions in High Chromium Steel ISIJ International Vol.61(2021), No.9
  2. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  3. Preface to the Special Issue on “Recent Progress in Inclusion/ Precipitate Engineering” ISIJ International Vol.61(2021), No.9
  4. Evaluation of Interfacial Energy between Molten Fe and Fe-18%Cr-9%Ni Alloy and Non-Metallic Inclusion-Type Oxides ISIJ International Vol.61(2021), No.9
  5. Effect of Heating Rate on Carbothermic Reduction and Melting Behavior of Iron Ore-Coal Composite Pellets ISIJ International Advance Publication
  6. Analysis of Air-Mist Cooling Effect for Coil in the Electromagnetic Induction Controlled Automated Steel Teeming System ISIJ International Vol.61(2021), No.9
  7. Production and Technology of Iron and Steel in Japan during 2020 ISIJ International Vol.61(2021), No.6
  8. Modeling of Wall Shear Stress Induced Inclusion Transport and Removal in Multi-Strand Tundish ISIJ International Vol.61(2021), No.9
  9. Three-dimensional Quantitative Evaluation of the Lamellar Curvature in Pearlitic Steel Based on an Orientation Analysis of Cementite ISIJ International Advance Publication
  10. Simultaneous Analysis of Soluble and Insoluble Oxygen Contents in Steel Specimens Using Inert Gas Fusion Infrared Absorptiometry ISIJ International Vol.61(2021), No.9

Search Phrase Ranking

23 Sep. (Last 30 Days)

  1. blast furnace
  2. inconel 600
  3. blast furnace productivity
  4. miyamoto goro
  5. b2o3 mold flux
  6. blue carbon
  7. investigation of arc behavior and temperature distribution corresponding to electrode and phase configurations in a multiphase ac arc
  8. ohno
  9. sei kimura
  10. skd61