論文検索サイト

日本エネルギー学会誌 Vol. 93 (2013), No. 1

ISIJ International
belloff
オンライン版ISSN: 1882-6121
冊子版ISSN: 0916-8753
発行機関: The Japan Institute of Energy

Backnumber

  1. Vol. 103 (2024)

  2. Vol. 102 (2023)

  3. Vol. 101 (2022)

  4. Vol. 100 (2021)

  5. Vol. 99 (2020)

  6. Vol. 98 (2019)

  7. Vol. 97 (2018)

  8. Vol. 96 (2017)

  9. Vol. 95 (2016)

  10. Vol. 94 (2015)

  11. Vol. 93 (2014)

  12. Vol. 92 (2013)

  13. Vol. 91 (2012)

  14. Vol. 90 (2011)

  15. Vol. 89 (2010)

  16. Vol. 88 (2009)

  17. Vol. 87 (2008)

  18. Vol. 86 (2007)

  19. Vol. 85 (2006)

  20. Vol. 84 (2005)

  21. Vol. 83 (2004)

  22. Vol. 82 (2003)

  23. Vol. 81 (2002)

  24. Vol. 80 (2001)

  25. Vol. 79 (2000)

  26. Vol. 78 (1999)

  27. Vol. 77 (1998)

  28. Vol. 76 (1997)

  29. Vol. 75 (1996)

  30. Vol. 74 (1995)

  31. Vol. 73 (1994)

  32. Vol. 72 (1993)

  33. Vol. 71 (1992)

日本エネルギー学会誌 Vol. 93 (2013), No. 1

NEDOの高効率なクリーンコールテクノロジーの海外展開について

井原 公生, 影山 淳, 在間 信之, 相樂 希美

pp. 107-112

抄録

Since fiscal year 2011 the New Energy and Industrial Technology Development Organization (NEDO) has carried out feasibility studies to promote the international diffusion of high-efficiency clean coal technology (CCT) in order to stabilize energy supply and demand and address global environmental issues. This paper presents an overview of good examples for strengthening Japan's global competitiveness and support for system exports in twenty feasibility studies that were conducted in fiscal years 2011 and 2012. Highlights of the paper include Japan's high efficiency and low failure rate in long-term operation and maintenance, matching the needs of counterpart countries by reducing environmental load using carbon dioxide capture and storage (CCS) technology, and optimizing facilities, layout, etc. Although CO2 emission reduction measures and the application of high-efficiency CCT such as ultrasupercritical (USC) technology to replace old existing power stations is effective, improved generation efficiency and the introduction of CCS should also be strategically developed in the near future. Through these activities, NEDO is contributing to the realization of a low carbon society.

他の人はこちらも検索

ブックマーク

SNSによる共有

論文タイトル

NEDOの高効率なクリーンコールテクノロジーの海外展開について

代替ジェット燃料製造のためのFT合成用バイモダル触媒の開発

石原 大輔, 金 玉洲, 椿 範立

pp. 113-118

抄録

Jet fuel synthesis from biomass syngas via Fischer-Tropsch synthesis was firstly conducted using Co/ZrO2-SiO2 bimodal catalyst in a slurry-phase reaction process. To break the limitation of classic ASF distribution law, a part of olefin was added into the reaction with the syngas to enhance the selectivity of C8-C16 selectivity, suppressing the formation rate of lighter hydrocarbons. The employed bimodal catalyst exhibited higher activity and higher selectivity than the uni-modal catalyst. It was clarified that the mesopores of the bimodal catalyst accelerated the mass transfer efficiency because the reactants and products here were heavier than those in conventional slurry-phase Fischer-Tropsch synthesis. Simultaneously, micropores of the bimodal catalyst realized the high dispersion of the supported cobalt particles, tuning the balance between dispersion and reduction degree of the supported cobalt. ZrO2 acted as not only building blocks for the micropores of the bimodal spatial structure, but also as a promoter for Co/SiO2 Fischer-Tropsch synthesis catalyst chemically. The comprehensive effect derived from bimodal spatial effect and ZrO2 promoter effect realized the high activity of the Co/ZrO2-SiO2 bimodal catalyst. With the aid of the added 1-decene, new C-C bond formation was initiated and more carbene was connected to 1-decene, resulting in the boosted C8-C16 selectivity.

他の人はこちらも検索

ブックマーク

SNSによる共有

論文タイトル

代替ジェット燃料製造のためのFT合成用バイモダル触媒の開発

Effect of Hydrothermal Reaction Conditions on Filtration Performance of Sludge

Nobusuke KOBAYASHI, Satoshi TACHIBANA, Shinpei NOMURA, Yasuhiro TANABE, Yukihiro FUJIMURA, Hirokazu TSUBOI, Takashi KIMOTO, Yoshinori ITAYA

pp. 119-126

抄録

Hydrothermal t reatment of sludge was carried out, and the effect of hydrothermal conditions such as treatment temperature and treatment period on the filtration performance of the treated sludge was evaluated. The properties of the treated sludge were also analyzed by particle size distribution measurements, pH, and ζ potential, in order to understand the physical filtration mechanism. An increase in treatment temperature significantly improved the filtration capability of the treated sludge. The length of the treatment period also affected the filtration performance; the filtration rate of the sludge subjected to a longer treatment period was increased. Despite a decrease in the particle size of the treated sludge during high-temperature hydrolysis treatment, the filtration capability improved with an increase in the hydrothermal treatment temperature. Significant agglomeration of the treated sludge was not observed, and the agglomeration effect on the filtration performance was fairly small. In addition, the slurry concentration related to the decomposition of organic substances exhibited a significant influence on filtration resistance.

他の人はこちらも検索

ブックマーク

SNSによる共有

論文タイトル

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい