論文検索サイト

鉄と鋼 Vol. 110 (2024), No. 6

ISIJ International
belloff

Grid List Abstracts

オンライン版ISSN: 1883-2954
冊子版ISSN: 0021-1575
発行機関: The Iron and Steel Institute of Japan

Backnumber

  1. Vol. 110 (2024)

  2. Vol. 109 (2023)

  3. Vol. 108 (2022)

  4. Vol. 107 (2021)

  5. Vol. 106 (2020)

  6. Vol. 105 (2019)

  7. Vol. 104 (2018)

  8. Vol. 103 (2017)

  9. Vol. 102 (2016)

  10. Vol. 101 (2015)

  11. Vol. 100 (2014)

  12. Vol. 99 (2013)

  13. Vol. 98 (2012)

  14. Vol. 97 (2011)

  15. Vol. 96 (2010)

  16. Vol. 95 (2009)

  17. Vol. 94 (2008)

  18. Vol. 93 (2007)

  19. Vol. 92 (2006)

  20. Vol. 91 (2005)

  21. Vol. 90 (2004)

  22. Vol. 89 (2003)

  23. Vol. 88 (2002)

  24. Vol. 87 (2001)

  25. Vol. 86 (2000)

  26. Vol. 85 (1999)

  27. Vol. 84 (1998)

  28. Vol. 83 (1997)

  29. Vol. 82 (1996)

  30. Vol. 81 (1995)

  31. Vol. 80 (1994)

  32. Vol. 79 (1993)

  33. Vol. 78 (1992)

  34. Vol. 77 (1991)

  35. Vol. 76 (1990)

  36. Vol. 75 (1989)

  37. Vol. 74 (1988)

  38. Vol. 73 (1987)

  39. Vol. 72 (1986)

  40. Vol. 71 (1985)

  41. Vol. 70 (1984)

  42. Vol. 69 (1983)

  43. Vol. 68 (1982)

  44. Vol. 67 (1981)

  45. Vol. 66 (1980)

  46. Vol. 65 (1979)

  47. Vol. 64 (1978)

  48. Vol. 63 (1977)

  49. Vol. 62 (1976)

  50. Vol. 61 (1975)

  51. Vol. 60 (1974)

  52. Vol. 59 (1973)

  53. Vol. 58 (1972)

  54. Vol. 57 (1971)

  55. Vol. 56 (1970)

  56. Vol. 55 (1969)

  57. Vol. 54 (1968)

  58. Vol. 53 (1967)

  59. Vol. 52 (1966)

  60. Vol. 51 (1965)

  61. Vol. 50 (1964)

  62. Vol. 49 (1963)

  63. Vol. 48 (1962)

  64. Vol. 47 (1961)

  65. Vol. 46 (1960)

  66. Vol. 45 (1959)

  67. Vol. 44 (1958)

  68. Vol. 43 (1957)

  69. Vol. 42 (1956)

  70. Vol. 41 (1955)

鉄と鋼 Vol. 110 (2024), No. 6

特集号「多相融体の流動理解のためのスラグみえる化技術および研究の進展」発刊に寄せて

齊藤 敬高

pp. 427-428

ブックマーク

SNSによる共有

論文タイトル

特集号「多相融体の流動理解のためのスラグみえる化技術および研究の進展」発刊に寄せて

多相融体の流動特性評価とプロセスシミュレーション

樋口 善彦, 嶋﨑 真一, 植田 滋, 齊藤 敬高

pp. 429-440

抄録

In the process of steelmaking refining, slag used in the preliminary treatment of molten iron or the converter is a multiphase melt. It contains solid particles that cannot dissolve entirely from the raw materials and gas bubbles generated through reactions, thus making it a multiphase molten material with dispersed components. The flow characteristics of the suspensions, foams, and emulsions significantly affect the separation of iron particles in the slag and the behavior of slag discharge. Multiphase melts typically behave as non-Newtonian fluids, so the evaluation, focusing on viscosity, is crucial to understanding their flow characteristics. This report reviews recent advances in slag visualization techniques for understanding the flow of multiphase molten materials. The results are as follows:

ブックマーク

SNSによる共有

論文タイトル

多相融体の流動特性評価とプロセスシミュレーション

酸化鉄含有スラグの溶融還元に伴う発生気泡の気泡径分布および発生位置の測定

大野 光一郎, 江口 大雅, 昆 竜矢

pp. 441-451

抄録

Slag foaming is a phenomenon caused by the generation of CO bubbles due to the reaction between iron oxide in slag and carbon in pig iron. The purpose of this study is to explore the controlling factors of slag foaming by observing the bubble formation behavior caused by the chemical reaction between iron oxide and Fe-C alloy in slag. 0.06 g of Fe-C alloy was charged to the bottom of the BN crucible, and 6.0 g of slag (SiO2:CaO:Fe2O3 = 40:40:30) was charged on top of it. The crucible was placed in an infrared image heating furnace, and the temperature was rapidly raised to 1370°C at a rate of 1000°C/min in a N2 stream, then held for a predetermined time and rapidly cooled. After rapidly cooling, the internal structure of the sample was observed using a high-resolution X-ray CT device. The spherical equivalent volume is calculated based on the number of bubbles observed and their equivalent circle diameter, and the relationship between the volume ratio of small bubbles in the slag volume and the distance from the bottom of the crucible is calculated, and the bubble density and volume ratio are calculated. It was suggested that the value tends to increase as the distance from the bottom of the crucible increases.

ブックマーク

SNSによる共有

論文タイトル

酸化鉄含有スラグの溶融還元に伴う発生気泡の気泡径分布および発生位置の測定

1673 KにおけるCaO-SiO2-FexO系フォーミングスラグの粘度測定

江頭 誉志幸, 齊藤 敬高, 中島 邦彦

pp. 452-462

抄録

Foaming slag generated in the steelmaking process, especially in hot-metal pretreatment and electric arc furnaces, is a gas-liquid coexistent fluid with CO gas generated by the interfacial reaction between slag containing iron oxide and hot metal or carbonaceous materials. In addition, it is essential to understand the flow behavior of foaming slag during slag-tapping and the sedimentation behavior of iron particles, which affects iron yield, and to expand our knowledge of the viscosity of gas-liquid coexisting fluids for CFD modeling of these phenomena. In the present study, the apparent viscosity of a foaming slag was systematically investigated, which was generated by reacting CaO-SiO2-FexO slag with Fe-C alloy and varying the composition, gas phase ratio, and shear rate of the slag. By adding Fe-C alloy powder to the slag, bubbles were continuously generated in the molten slag, and foaming slag suitable for viscosity measurement could be prepared. It was found that the higher the amount of Fe-C alloy powder, the larger the gas phase ratio of the foaming slag due to an increase in the number of bubbles generated. The relative viscosity of the foaming slag was found to increase with the gas phase ratio. The higher the rotation speed, the smaller the relative viscosity of the foaming slag indicating shear-thinning characteristics. The relationship between shear rate and shear stress calculated from the viscosity of the foaming slag did not show general non-Newtonian fluid behavior.

ブックマーク

SNSによる共有

論文タイトル

1673 KにおけるCaO-SiO2-FexO系フォーミングスラグの粘度測定

オイル層で覆われた水浴に侵入する球体の流体力学的挙動

蓮井 智之, 樋口 善彦

pp. 463-472

抄録

To meet the increasing demand for low-impurity steel products, powder top blowing has been applied to the steelmaking process. Powder reagents penetrating deeper into the molten metal lead to longer resident time and higher efficiency of refining. Many studies have been performed on the basis of cold model experiments with a single liquid phase for clarifying the penetration behavior of the particle. However, the effects of the second liquid phase have been reported little whereas molten slag often exists on the surface of molten metal in the steelmaking process.

ブックマーク

SNSによる共有

論文タイトル

オイル層で覆われた水浴に侵入する球体の流体力学的挙動

固液懸濁液中の粒子の終末沈降速度

嶋﨑 真一, 植田 滋, 齊藤 敬高

pp. 473-482

抄録

In the steel making process, most slags and fluxes often contain solids phase such as CaO. It is well known that the suspension in which solid phase are suspended has higher viscosity than that of pure matrix liquid. Therefore, it is expected that the viscosity of slag containing solid phase will increase. In this study, terminal settling velocity of particle in suspension has been measured. The suspensions consist of silicone oil matrix and polyethylene beads, and the settling particles are bearing balls made of stainless steel. As a result of the higher viscosity of suspension, the terminal settling velocity of bearing ball becomes slower than that in pure silicone oil. It was clarified that the retardation of the terminal velocity and the increasing of drag coefficient depend only on the volume fraction of solid phase (the polyethylene beads) of the suspension, and it is independent of the size of the suspended beads and the viscosity of the matrix liquid. A correlation equation for predicting the drag coefficient of particles in suspension was proposed.

ブックマーク

SNSによる共有

論文タイトル

固液懸濁液中の粒子の終末沈降速度

落球法による気液混相流体の見掛け粘度測定

三田 祐作, 岩間 崇之, 禹 華芳, 嶋崎 真一, 齊藤 敬高, 井上 亮, 植田 滋

pp. 483-493

抄録

The recovery rate of iron is reduced if iron particles suspended in the refining slag do not sediment. The sedimentation rate of particle iron in the foaming slag is slower than in the slag in the single-phase liquid. Iron particles are especially likely to remain in the foaming slag. To predict the sedimentation rate of iron particles in the slag, it is necessary to derive an accurate viscosity of the foaming slag. However, it is difficult to estimate an appropriate value because the state of gas-liquid multiphase fluid changes the condition with time. Its apparent viscosity varies depending on the measurement method because it is a non-Newtonian fluid. In this study, to understand the sedimentation behavior of iron particles in foaming slag, a gas-liquid multiphase fluid was generated by glycerin solution. Its apparent viscosity was estimated by the Stokes equation using the falling-ball method. The sedimentation rate of stainless steel, titanium, and glass balls with a diameter of 2 mm were measured in a glycerin aqueous solution gas-liquid fluid. The sedimentation rate was non-uniform because the gas-liquid fluid's state differed depending on the position. The apparent viscosity of the fluid increased with an increase in the gas phase ratio. The variation of apparent viscosity with the conditions of the falling-ball method was also discussed. Furthermore, a comparison was made between the present results and the apparent viscosity measured by the rotational technique.

ブックマーク

SNSによる共有

論文タイトル

落球法による気液混相流体の見掛け粘度測定

フォーミングしたスラグ中における粒子の沈降

嶋﨑 真一, 植田 滋, 齊藤 敬高, 加藤 健司

pp. 494-502

抄録

In the steelmaking process, molten slag is foamed through gas injection and gas generation reactions, and molten iron droplets get mixed and trapped in the slag. A settling velocity of an iron droplet in the foaming slag are very important, because a residence time of an iron droplet in the slag is directly calculated the settling velocity. According to the previous research, the settling velocity is expected to be slower than in regular non-foaming slag. However, it has yet to be quantitatively clarified. This study measured the settling velocities of particles through a foaming liquid of glycerin-water solution. A dimensionless correlation equation for particle settling velocity in the formed liquid was proposed by conducting a dimensional analysis of the experimental data. Using the obtained equation, we have predicted the settling velocity of iron particles in the foaming slag. It was clarified that the settling velocity of iron particles is highly affected by a volume fraction of gas phase in the foaming slag. There is a certain threshold for the velocity, and the velocity abruptly became zero when it falls below that threshold.

ブックマーク

SNSによる共有

論文タイトル

フォーミングしたスラグ中における粒子の沈降

球粒子貫通による界面活性剤水溶液薄膜の破断機構

加藤 健司, 脇本 辰郎

pp. 503-511

抄録

We experimentally investigated the rupture conditions of a thin film of an aqueous surfactant solution when a spherical particle with a finite falling velocity penetrates the film. When the sphere passes through the film, the film wraps around the sphere, and a gas layer is maintained between the film and the spherical surface. When the velocity of the sphere is small, perforation occurs in the wrapping film below the equator of the sphere and the contact line moves along on the sphere surface. The energy instability occurs at a certain position of the contact line on the sphere surface, leading to rupture of the entire thin film. As the sphere velocity is increased, the perforation of the wrapping film occurs above the equator. In this condition, the probability of thin film rupture increases, since the perforation of the wrapping film immediately leads to rupture of the entire film. The motion of the gas between the thin film and the spherical surface was considered analytically from the balance between surface tension and viscous force. According to the result, the velocity condition above which the wrapping thin film could exist beyond the equator of the sphere was evaluated.

ブックマーク

SNSによる共有

論文タイトル

球粒子貫通による界面活性剤水溶液薄膜の破断機構

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい