鉄と鋼 Vol. 56 (1970), No. 10
Grid List Abstracts
オンライン版ISSN: | 1883-2954 |
冊子版ISSN: | 0021-1575 |
発行機関: | The Iron and Steel Institute of Japan |
Backnumber
-
Vol. 110 (2024)
-
Vol. 109 (2023)
-
Vol. 108 (2022)
-
Vol. 107 (2021)
-
Vol. 106 (2020)
-
Vol. 105 (2019)
-
Vol. 104 (2018)
-
Vol. 103 (2017)
-
Vol. 102 (2016)
-
Vol. 101 (2015)
-
Vol. 100 (2014)
-
Vol. 99 (2013)
-
Vol. 98 (2012)
-
Vol. 97 (2011)
-
Vol. 96 (2010)
-
Vol. 95 (2009)
-
Vol. 94 (2008)
-
Vol. 93 (2007)
-
Vol. 92 (2006)
-
Vol. 91 (2005)
-
Vol. 90 (2004)
-
Vol. 89 (2003)
-
Vol. 88 (2002)
-
Vol. 87 (2001)
-
Vol. 86 (2000)
-
Vol. 85 (1999)
-
Vol. 84 (1998)
-
Vol. 83 (1997)
-
Vol. 82 (1996)
-
Vol. 81 (1995)
-
Vol. 80 (1994)
-
Vol. 79 (1993)
-
Vol. 78 (1992)
-
Vol. 77 (1991)
-
Vol. 76 (1990)
-
Vol. 75 (1989)
-
Vol. 74 (1988)
-
Vol. 73 (1987)
-
Vol. 72 (1986)
-
Vol. 71 (1985)
-
Vol. 70 (1984)
-
Vol. 69 (1983)
-
Vol. 68 (1982)
-
Vol. 67 (1981)
-
Vol. 66 (1980)
-
Vol. 65 (1979)
-
Vol. 64 (1978)
-
Vol. 63 (1977)
-
Vol. 62 (1976)
-
Vol. 61 (1975)
-
Vol. 60 (1974)
-
Vol. 59 (1973)
-
Vol. 58 (1972)
-
Vol. 57 (1971)
-
Vol. 56 (1970)
-
Vol. 55 (1969)
-
Vol. 54 (1968)
-
Vol. 53 (1967)
-
Vol. 52 (1966)
-
Vol. 51 (1965)
-
Vol. 50 (1964)
-
Vol. 49 (1963)
-
Vol. 48 (1962)
-
Vol. 47 (1961)
-
Vol. 46 (1960)
-
Vol. 45 (1959)
-
Vol. 44 (1958)
-
Vol. 43 (1957)
-
Vol. 42 (1956)
-
Vol. 41 (1955)
キーワードランキング
21 Dec. (Last 30 Days)
鉄と鋼 Vol. 56 (1970), No. 10
Reduction of Iron Ore at Temperatures above 900°
Fusatoshi EMOTO, Mitsuru TATE
pp. 1301-1310
抄録
For the purpose of clarifying the mechanism of the reduction of iron are in the high temperature range from 900°C to 1 450°C, the rate of reduction by CO gas with and without the presence of coke was studied.
In the case of reduction by CO gas only, the rate increased with the increase of temperature, but it became smaller when are or pellet began to fuse.
The rate of reduction was remarkably accelerated by solid coke when are or pellet fused, however, this effect of coke was weak when it remained in the solid state.
The rate of reduction by CO gas when temperature was raised with time was also studied and it was found that there were functional relations between heating velocity and reduction rate in the temperature rangefrom 900deg;C up to the fusion temperature. When the temperature was changed linearly with time, the degree of reduction increased linearly with temperature.
A specially designed thermobalance with strain gauge was employed in this study.
Theoretical Analysis on the Dynamic Characteristics of Blast Furnace in the Region between Melting Zone and Tuyere Level
Masayuki HORIO, Iwao MUCHI
pp. 1311-1322
抄録
A mathematical model for analysing the dynamic characteristics of blast furnace in the region between melting zone and tuyere level are developed in this paper. On the basis of this model, the fundamental informations on the responses of both the location of melting zone and temperature of molten materials at the tuyere level to the step changes of blast temperature, steam ratio, blast volume and oil-injection rate have been obtained with the aid of digital computer.
Three principal time constants, i. e., time constant concerning the accumulation of materials in melting zone, one related to the accumulation of heat in coke zone supposedly located below melting zone and one connected with the shifting process of melting zone, have been taken into account in the analysis. It has been found that the shifting process of melting zone affects severely on the dynamic behavior of blast furnace, since the time constant connected with this process becomes large value such as several hours.
Study on Solidification of Heavy Steel Ingots
Kiichi NARITA, Takasuke MORI
pp. 1323-1341
抄録
Solidification processes of heavy steel ingots are analogized by using computer, and internal structure is discussed in connection with distribution of chemical elements, equi-solidus line, freezing rate (velocity of averaged advancing solidus line) and staying time (staying time between liquidus and solidus temperature). The results are as follows:
1) An intimate relation is seen among the internal structures, freezing rate and its distribution.
2) Inverse V segregation appeared mainly in the zone with positive acceleration of freezing rate. This means that the segregation take place in granular crystal zone as well as in equi-axial crystal zone.
3) The pouring temperature appears to have a great influence on internal structures. In discussing the internal structures, therefore, a good care must be paid on the difference between the pouring temperature of liquid steel and the solidus temperature which is subject to the chemical composition.
4) The internal structures along an equi-time solidus line differ in top side and bottom side. There are branched columnar crystals in the top part, equi-axial crystals in the middle part and granular crystals on the bottom parts of 20t ingot along the 2 hr-solidus line after pouring.
5) The last solidifying zone (V segregation zone) shows the gourd-like-shape, which is obviously affected by the electric arc hot-topping, and then fine equi-axial crystals or granular crystals are formed at the bottom.
他の人はこちらも検索
鉄と鋼 Vol.50(1964), No.5
鉄と鋼 Vol.53(1967), No.11
鉄と鋼 Vol.54(1968), No.10
Structure of Rust Layer Formed on Atmospheric Corrosion Resistant Steels
Masamichi KOWAKA, Jiro SATAKE, Taishi MOROISHI, Nobukatsu FUJINO
pp. 1342-1351
抄録
The distribution of elements in rust layer formed on low alloy steels after various periods of exposures in industrial and rural atmospheres was investigated by means of microscopic examination and electron probe microanalysis. The rust layer in large pits contains Cu, P, and Cr in a localized state. Cr and P concentrate around such defects in the rust as voids and cracks. The local concentration of Cu seems to diminish as the exposure period becomes longer. The rust layer on the flat surface surrounding large pits and also the surface layer above large pits have shown no evidence of localized concentration of Cu and P and are characterized by the fact that little Cr content is found in the rust. Si, main constituent of dusts, has been found in these parts of the rust, but none in the pits. It is supposed that Cr, P, and Cu produced by corrosion reaction presumably form far less soluble compounds than ferrous ion and are likely to precipitate in the pits while ferrousion diffuses out from the pits and precipitates on outer surface.
Metallographic Analysis of Vanadium in High Strength Steel
Shigeo WAKAMATSU
pp. 1352-1364
抄録
A simple and accurate method has been developed for the metallographic analysis of vanadium in high strength steel.
1. Separation of vanadium compound from steel.
(a) The steel sample covered with close-texture filter paper as a diaphragm and connected as an anode, is dissolved into 100 to 130ml of 1% NaCl-5% EDTA electrolyte (pH 6-7) with current density of 50 mA/cm2 for 1 to 2 hr. Remove the anode, and residue is collected into the filter paper. To the residue and filter paper add 50ml of HCl (1: 4), and pass in a stream of air for 30 min at room temperature.
(b) Filter and wash with water. Add 5ml of HNO3 and 10ml of HClO4 to the filterate and evaporate to dense white fumes, cool, dilute to 50ml and determine vanadium as (Fe, V) 3C in accordance with section 2.
(c) Add 30ml of HNO3 and 20ml of HClO4 to the electroyte and evaporate to dense white fumes, cool, dilute to 100ml, and determine vanadium as solid solution in accordance with section 2.
(d) Transfer the paper and residue (paragraph (b)) to a beaker, add 30ml of HCl (1:1) and boil for 5 min.
(e) Filter and wash with water. Add 5ml of HNO3 and 10ml of HClO4 to the filterate and evaporate to dense white fumes, cool, dilute to 50ml, and determine vanadium as V2O3 in accordance with section 2.
(f) Transfer the paper and residue (paragraph (e)) to a beaker, add 40ml of HNO3 (1:3), and boil for 5 min.
(g) Filter and wash with water. Add 10ml of HClO4 to the filterate and evaporate to dense white fumes, cool, dilute to 50ml, and determine vanadium as V4C3 in accordance with section 2.
(h) Transfer the paper and residue (paragraph (g)) to a beaker, add 30ml of HNO3 (1:1) and 5ml of H2O2 and boil for 10 min.
(i) Filter and wash with water. Add 10ml of HClO4 to the filterate and evaporate to dense white fumes, cool, dilute to 50ml, and determine vanadium as VN in accordance with section 2. Discard the residue.
2. Photometric determination of vanadium.
Transfer 20ml of each of solutions (section 1.(b), (c), (e), (g) and (i)) to separatory funnels, add 2ml of copper solution (0.5%) and 1 drop of KMnO4 solution (1%), and let stand for 5min. Add 15ml of N-benzoylphenylhydroyxylamine chloroform solution (0.067%) and 10ml of HCl (2:1), and shake for 30 sec. Measure the absorbance of organic phase against chloroform at 530mμ.
他の人はこちらも検索
鉄と鋼 Vol.57(1971), No.3
鉄と鋼 Vol.77(1991), No.7
鉄と鋼 Vol.99(2013), No.5
Superlattices in Iron-Base Alloys (Structures and Mechanical Properties)
Soji NENNO, Toshio SABURI
pp. 1365-1382
他の人はこちらも検索
鉄と鋼 Vol.50(1964), No.5
鉄と鋼 Vol.53(1967), No.11
鉄と鋼 Vol.54(1968), No.10
Toward New Relationship between Iron & Steenndustries and Steel Market
Kenkichi TOSHIMA
pp. 1396-1400
On the Hexagonal Carbide V2C Precipitated in Austenitic Steels
Ryohei TANAKA, Takayuki SHINODA, Tomoyuki ISHII
pp. 1406-1408
抄録
Hexagonal carbide V2C has never been found in steel.
The present authors, however, found that this carbide was precipitated in 16% chromium-12% nickel-0.12% carbon austenitic steels containing vanadium by the electron microscopic and electron diffraction methods.
The carbide V2C had lattice constants of a=2.8 Å and c=4.5 Å, and axial ratio c/a of about 1.6, and dispersed as small grain-like particles, near by carbide M23C6 which precipitated in grain boundary.
The precipitation of the V2C carbide was found to occur only in the steels with a comparatively low value of V/-(C+ N) atomic ratio, and the carbide seemed to be a transitional phase since it disappeared after a prolonged heating.
焼結鉱の生産性および品質におよぼすMgOの影響
中沢 孝夫, 佐々木 稔, 近藤 真一, 小島 鴻次郎, 永野 恭一, 稲角 忠弘, 品田 功一, 八浪 一温, 深谷 一夫, 山田 幸夫, 清水 政治, 才野 光男, 栗山 尭, 岡部 侠児, 槌谷 暢男, 荒木 泰治, 川和 高穂, 永岡 典義, 根本 秀太郎, 鈴木 章, 鈴木 武, 野村 輝彦, 森 久, 田中 伸昌, 佐藤 憲夫, 平居 正純, 田中 智夫, 小沢 竜司, 船越 督己, 根本 実, 松田 昭一, 金沢 正午, 鈴木 信一, 今野 敬治, 邦武 立郎
pp. 1409-1434
他の人はこちらも検索
鉄と鋼 Vol.56(1970), No.4
鉄と鋼 Vol.63(1977), No.10
鉄と鋼 Vol.86(2000), No.12
論文アクセスランキング
21 Dec. (Last 30 Days)
-
Wettability of CaS against molten iron at 1873 K
ISIJ International 早期公開
-
凝固過程における溶鋼中からAl2O3上へのMnSの晶出挙動
鉄と鋼 早期公開
-
-
In-situ Observation of Precipitation and Growth of MnS Inclusions during Solidification of a High Sulfur Steel
ISIJ International Vol.64(2024), No.14
-
-
モデル材料を用いた凝固過程における介在物生成挙動のその場観察
鉄と鋼 早期公開
-
Transition behavior of gas containing suspension from solid-like to liquid-like flows
ISIJ International 早期公開
-
-
Slag-steel reactions in the refining of Advanced High-Strength Steel
ISIJ International 早期公開
-
Chemical and Mechanical Factors on Phosphorus Dissolution Behavior from P-concentrated Slag
ISIJ International Vol.64(2024), No.14
この機能はログイン後に利用できます。
下のボタンをクリックしてください。