材料と環境 Vol. 69 (2020), No. 12
Backnumber
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
キーワードランキング
21 Nov. (Last 30 Days)
材料と環境 Vol. 69 (2020), No. 12
窒化処理したねずみ鋳鉄(FC)の塩水環境での耐食性
冨士川 尚男, 西坂 颯平, 西川 輝彦
pp. 329-332
DOI:
10.3323/jcorr.69.329抄録
Corrosion resistance of nitrided gray cast iron (FC) in salt water environment, using the salt spray test and the electrochemical measurement, is improved by an iron nitride layer formed about 10μm thickness on the surface. It was also clarified that the corrosion resistance is further improved by performing an oxide film treatment to form a thin oxide film of about several μm on the surface after the nitriding treatment. Nitriding treatment with NH3 alone without RX gas produces a higher concentration of nitrogen in the ε-Fe3N layer formed on the surface layer than the soft nitriding treatment in which CO is passed by RX gas in addition to NH3 during nitriding. The nitriding treatment with only NH3 without RX gas was improved in corrosion resistance due to the higher nitrogen concentration in ε-Fe3N layer. Also, by forming a thicker iron nitride layer or forming a dense oxide film on the surface layer, the graphite that appears on the surface layer is almost covered, and also the iron nitride layer is selectively formed at the interface of the graphite in the surface layer part. The oxide film treatment showed better corrosion resistance by forming a dense oxide film of several μm thickness at a low temperature of around 450℃.
PWR一次系模擬水中における316ステンレス鋼の粒界割れ感受性
竹本 幹男, 竹田 貴代子, 工藤 赳夫
pp. 333-350
DOI:
10.3323/jcorr.69.333抄録
Authors report susceptibility of IG-crack in the simulated PWR primary water and discuss the mechanism of the IG-crack of Type-316 stainless steel. First, the authors compare the crack propagation rates of the stainless steels in chloride solution, simulated BWR and PWR primary water. By referring the Wagner lengths in three solutions, we also discuss whether the anodic current density can be compensated by the cathodic reaction rate when wet corrosion is associated in the IG-cracks in these three solutions.Next we introduce stress relaxation of the Type-316 stainless steel at 340℃ and discuss the test methods required to reproduce the IG-crack in the simulated PWR primary water. In the third, we report IG-SCC test methods and test results performed by two our research laboratories and how the cold worked Type-316 stainless steel is highly resistant against the IG-crack in the simulated PWR primary water. We could not produce the IG-crack as long as we use notched specimens, however, the IG-crack propagated for the limited tests by the K-increase type loading of the specimens with fatigue induced pre-cracks. The authors propose a self-healing mechanism of the Type-316 stainless steel to explain how this steel is stable in the simulated PWR primary water.
他の人はこちらも検索
材料と環境 Vol.70(2021), No.12
材料と環境 Vol.71(2022), No.1
大気腐食環境下における鋼材の腐食挙動および水素侵入挙動の同時モニタリング
原田 宏紀, 面田 真孝, 大塚 真司, 河野 崇史
pp. 351-358
DOI:
10.3323/jcorr.69.351抄録
To develop high strength steel sheets with high resistance to hydrogen embrittlement, it is necessary to clarify the mechanism of hydrogen entry into steel. Hydrogen entry is caused by the corrosion reaction under atmospheric environment. However, the relationship between hydrogen entry and corrosion behavior, and the influence of environmental factors on the hydrogen entry such as temperature, relative humidity (RH) and salt deposition is not fully understood. In this study, simultaneous monitoring of both hydrogen entry and corrosion rate was employed to investigate the influence of environmental factors on hydrogen entry and corrosion behavior. The monitoring was conducted under the atmospheric exposure test.As a result, both the hydrogen entry and the corrosion rate increased with an increase of amount of salt deposition. In addition, the corrosion rate increased with an increase of RH, whereas the hydrogen had been permeated the most at the medium RH. The mechanism of the hydrogen entry at the medium RH range was assumed to be related to lowering pH in high [Cl-] environment.
論文アクセスランキング
21 Nov. (Last 30 Days)
-
-
-
-
Development of a Low-carbon Sintering Process Technology and Its Application to a Pilot-scale Sintering Testing
ISIJ International Vol.64(2024), No.13
-
凝固過程における溶鋼中からAl2O3上へのMnSの晶出挙動
鉄と鋼 早期公開
-
Molecular dynamics simulation of viscosity of the CaO, MgO and Al2O3 melts
ISIJ International 早期公開
-
-
凝固過程のミクロ偏析による溶質濃度分布の定量的理解
鉄と鋼 早期公開
-
-
Reduction and Carburization Behaviors of Iron Oxide Composite with Iron Carbide and Free Carbon
ISIJ International 早期公開
この機能はログイン後に利用できます。
下のボタンをクリックしてください。