材料と環境 Vol. 55 (2006), No. 12
Backnumber
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
キーワードランキング
21 Jan. (Last 30 Days)
材料と環境 Vol. 55 (2006), No. 12
鉄道橋の腐食実態と対策
田中 誠
pp. 526-531
DOI:
10.3323/jcorr.55.526抄録
In maintenance management of a painted steel railway bridge, appropriate corrosion prevention measures are needed. For establishing effective corrosion prevention measures, it is important to make clear classifications of coating degradation patterns. Accordingly we made a lot of observations on coating films of numerous bridges. The results of the observations showed that a coating degradation could be classified into some patterns, and that the coating degradation patterns (such as corrosion under coating, checking of coating, and peering of coating) were affected by construction environment and bridge ages.
ステンレス鋼の水素脆化感受性に及ぼす表面水素濃度の影響
大村 朋彦, 小林 憲司, 宮原 光雄, 工藤 赳夫
pp. 537-543
DOI:
10.3323/jcorr.55.537抄録
Susceptibility to hydrogen embrittlement (HE) of austenitic stainless steels were investigated by Slow Strain Rate Testing (SSRT), both in gaseous hydrogen environment pressurized at 45 MPa and under electrochemical cathodic charging conditions. Test results were discussed based on estimated surface hydrogen contents of the unstressed steels into which hydrogen was charged under the same test conditions as SSRT. HE susceptibility of the steels in both gaseous hydrogen environments and electrochemical cathodic charging depended upon estimated surface hydrogen contents. Minimal of surface hydrogen content for HE were less than 10 ppm for 304L steel, and 100 ppm for 316L, respectively. The threshold value for 316L exceeded the content of hydrogen naturally absorbed from 45 MPa gaseous hydrogen environments, indicating that 316L has a sufficient resistance to hydrogen embrittlement in gaseous hydrogen environment pressurized at 45 MPa.
Ni電極表面におけるNi水酸化物膜の生成
兒玉 歩, 池田 寛子, 中瀬 智穂, 増田 尊子, 北原 惠一, 荒井 貞夫, 小沼 良雄, 林 宏爾, 山下 順三, 會川 義寛
pp. 544-548
DOI:
10.3323/jcorr.55.544抄録
Transient of current in thin layer formation on nickel electrode was investigated during an anodic potential step in 0.1 M NaOH aqueous solution. The current was shown to have a time-dependency of i(t)=i0[1+(t/τ)]-1/2 which was derived from ionic migration under potential drop through the surface thin film. In the equation, the initial current, i0, and the time constant, τ, after the potential step were estimated from the slope and the intercept on the 1/i2 vs. t plot, respectively. From a plot of i02τ vs. φ, the oxide layer thickness at the potential, φ0, before the step and an average ionic mobility in the oxide film were calculated. The oxide layer was found to grow from the potential of 0.02 V vs. SCE and to saturate in thickness at 1.3 nm at the potential range between 0.2 and 0.4 V. The average mobility was estimated to be μ=9.9×10-20m2V-1s-1.
Passivation Behavior of Iron in Concentrated LiBr Solutions Containing Molybdate and Nitrate at Elevated Temperature
Hitoshi Yashiro, Masaru Kawata, Masahiko Itoh, Kenji Machizawa, Ken-ichi Shimizu
pp. 549-553
DOI:
10.3323/jcorr.55.549抄録
Since the control of corrosion by the addition of inhibitors is one of the key technologies for the adsorption refrigeration systems, the passivation behavior of an iron electrode in the 17.3 mol/kg LiBr+0.1 mol/kg LiOH solution containing molybdate and nitrate has been investigated at 428 K through electrochemical measurements and film analysis by radio frequency grow discharge optical emission spectroscopy (rf-GDOES). The results indicated that molybdate worked as a principal inhibitor in the system; molybdate was able to passivate iron without causing any pitting. However, the oxidizing power of molybdate was not sufficient to form a passive film on iron rapidly enough. The process could be assisted by the addition of nitrate; iron was passivated very quickly when the solution contained both molybdate and nitrate. Cares should be paid to that nitrate of higher concentrations could cause pitting especially when the concentration of molybdate was relatively low. The oxide films formed on iron in the presence of molybdate and nitrate were much thinner than those formed with only molybdate.
論文アクセスランキング
21 Jan. (Last 30 Days)
-
Wettability of CaS against molten iron at 1873 K
ISIJ International 早期公開
-
Coating Structure and Corrosion Mechanism of Zn-19%Al-6%Mg Alloy Coating Layer
ISIJ International 早期公開
-
-
Settling of Particle in Foaming Slag
ISIJ International Vol.64(2024), No.15
-
-
Effect of Cooling Rate on Microstructure, Phases, and Properties of Al-Si Coated Hot-Press-Forming Steel Sheets
MATERIALS TRANSACTIONS Vol.66(2025), No.1
-
-
Phase Equilibria of the Iron-rich Corner of the CaO–Fe2O3–Al2O3 System at 1240°C in Air
ISIJ International Vol.64(2024), No.15
-
Reduction and Carburization Behaviors of Iron Oxide Composite with Iron Carbide and Free Carbon
ISIJ International Vol.64(2024), No.15
-
Terminal Settling Velocity of Particle in Suspension
ISIJ International Vol.64(2024), No.15
この機能はログイン後に利用できます。
下のボタンをクリックしてください。