材料と環境 Vol. 66 (2017), No. 3
Backnumber
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
キーワードランキング
30 Dec. (Last 30 Days)
材料と環境 Vol. 66 (2017), No. 3
埋設環境における炭素鋼の腐食挙動の測定
中山 元, 纐纈 知己, 篠崎 一平, 榊原 洋平
pp. 87-92
DOI:
10.3323/jcorr.66.87抄録
Pipes and apparatus made of carbon steel are used in underground layers, and exposed to underground water environments. To evaluate the corrosion behavior of carbon steel under buried moist bentonite-silica sand condition, corrosion tests were performed using several kinds of corrosion-sensing sensors.
反応性塗料を塗布した発錆炭素鋼に生成するさび層の構造と防食性
山下 正人, 花木 宏修, 野村 豊和, 寺谷 亨, 宇木 則倫, 金 暻泰, 藤本 慎司, 林 慶知, 松井 秀樹, 木村 晃彦
pp. 93-98
DOI:
10.3323/jcorr.66.93抄録
Effect of Al ion on the structure and corrosion protection of rust layer on a carbon steel has been examined. It was found that coexistence of Al ion in atmospheric corrosion environment leads to preferential formation of α-FeOOH structure in the rust layer. Addition of Al ion into heavy-duty coating brings the structural change effect to the rust layer; that is, residual rust consisting mainly of β-FeOOH and Fe3O4 on salinity-pre-corroded carbon steel can change its structure to α-FeOOH considerably after applying the heavy-duty reactive paint coating. This change in the structure of rust layer results in higher corrosion protection properties of the reactive paint.
海水及び淡水中の炭素鋼の均一腐食進展予測モデルの構築
小澤 正義, 明石 正恒
pp. 99-106
DOI:
10.3323/jcorr.66.99抄録
Uniform corrosion penetration prediction model for carbon steel that can be applied in various water quality has been established. It was investigated for the purpose of expanding the knowledge of the corrosion behavior of carbon steel in Fukushima Daiichi nuclear power station of Tokyo Electric Power Holdings Co., Ltd.The model is applicable to static condition, and flow condition of circular tube. Parameters of the model are temperature, salinity, Larson Skold the Index, average flow velocity and inner diameter of carbon steel tube.In static water condition, values of corrosion penetration which were predicted by the model were almost the same values as those in the experiments.In flow conditions in circular tube, values of corrosion penetration which were predicted by the model were within the range from about 0.5 to 2 times of those in the experiments.
論文アクセスランキング
30 Dec. (Last 30 Days)
-
Wettability of CaS against molten iron at 1873 K
ISIJ International 早期公開
-
凝固過程における溶鋼中からAl2O3上へのMnSの晶出挙動
鉄と鋼 早期公開
-
Reduction and Melting Behaviors of Iron Oxide Composite with Carbon Deposited Using CO–CO2–H2 Mixed Gas
ISIJ International Vol.64(2024), No.15
-
モデル材料を用いた凝固過程における介在物生成挙動のその場観察
鉄と鋼 早期公開
-
-
In-situ Observation of Precipitation and Growth of MnS Inclusions during Solidification of a High Sulfur Steel
ISIJ International Vol.64(2024), No.14
-
Slag-steel Reactions in the Refining of Advanced High-Strength Steel
ISIJ International Vol.64(2024), No.15
-
-
Effect of Cooling Rate on Microstructure, Phases, and Properties of Al-Si Coated Hot-Press-Forming Steel Sheets
MATERIALS TRANSACTIONS Vol.66(2025), No.1
-
この機能はログイン後に利用できます。
下のボタンをクリックしてください。