論文検索サイト

材料と環境 Vol. 65 (2016), No. 2

ISIJ International
belloff
オンライン版ISSN: 1881-9664
冊子版ISSN: 0917-0480
発行機関: Japan Society of Corrosion Engineering

Backnumber

  1. Vol. 73 (2024)

  2. Vol. 72 (2023)

  3. Vol. 71 (2022)

  4. Vol. 70 (2021)

  5. Vol. 69 (2020)

  6. Vol. 68 (2019)

  7. Vol. 67 (2018)

  8. Vol. 66 (2017)

  9. Vol. 65 (2016)

  10. Vol. 64 (2015)

  11. Vol. 63 (2014)

  12. Vol. 62 (2013)

  13. Vol. 61 (2012)

  14. Vol. 60 (2011)

  15. Vol. 59 (2010)

  16. Vol. 58 (2009)

  17. Vol. 57 (2008)

  18. Vol. 56 (2007)

  19. Vol. 55 (2006)

  20. Vol. 54 (2005)

  21. Vol. 53 (2004)

  22. Vol. 52 (2003)

  23. Vol. 51 (2002)

  24. Vol. 50 (2001)

  25. Vol. 49 (2000)

  26. Vol. 48 (1999)

  27. Vol. 47 (1998)

  28. Vol. 46 (1997)

  29. Vol. 45 (1996)

  30. Vol. 44 (1995)

  31. Vol. 43 (1994)

  32. Vol. 42 (1993)

  33. Vol. 41 (1992)

  34. Vol. 40 (1991)

材料と環境 Vol. 65 (2016), No. 2

二相ステンレス鋼のすき間腐食におけるαまたはγ相の優先溶解機構

青木 聡

pp. 45-50

抄録

Duplex stainless steels (DSS) possess a ferritic (α) phase matrix dispersed with austenitic (γ) phase precipitates. Due to the chemical compositional arrangement and the characteristic α/γ dual phase structure, DSS possess superior mechanical properties and corrosion resistance without sacrificing economic performance. In any case, even DSS suffer from crevice corrosion. Accordingly, the measure of crevice corrosion is of pragmatic importance. The modes of crevice corrosion on DSS were complex because of its preferential dissolution and distinguishable as some types from the outside to the center of the crevice: the passivity retention region, the region with preferential dissolutions of γ phase precipitates, and the region with preferential dissolution of the α phase matrix. It is described the study to elucidate the preferential dissolution mechanism of crevice corrosion on DSS, based on the in-situ observation of crevice corrosion dissolution behavior, and the analysis of dissolution behavior of DSS, α and γ phases in a simulated crevice solution.

ブックマーク

SNSによる共有

論文タイトル

二相ステンレス鋼のすき間腐食におけるαまたはγ相の優先溶解機構

ディーゼルエンジン燃焼ガスの凝縮液による銅系部材の腐食環境検討

保坂 洋, 後藤 悦子, 内潟 寛, 藤川 郁司, 片岡 寛, 永吉 隆, 建石 剛

pp. 59-66

抄録

A copper part (C1100), used in an EGR-equipped engine, got corroded. This copper part was directly contacting an iron part (S45C), for which the iron part should have been corroded before the copper one began being corroded, because iron is less noble than copper. However, it was found that the corrosion had taken place only on the copper part.
In order to clarify the reason, we investigated the phenomenon for substances related to the corrosion and tried to identify how the environments became corrosive and what mechanisms caused the corrosion, using a chemical method.
As the result, we came up with the conclusion that a solution consisting of sulfuric acid and nitric acid might probably have worked on the corrosion, by verifying that copper becomes more corrosive than iron in a place where nitric acid is present.

ブックマーク

SNSによる共有

論文タイトル

ディーゼルエンジン燃焼ガスの凝縮液による銅系部材の腐食環境検討

チオシアン酸イオン含有水溶液中での鋼材の腐食反応と水素吸蔵に及ぼす比液量と溶液pHの影響

市場 幹之, 高井 健一, 酒井 潤一

pp. 67-74

抄録

An ammonium thiocyanate (NH4SCN) solution is widely used in hydrogen embrittlement evaluations of high-strength steel materials. It is known that an increase in the specific solution volume to the specimen surface area results in a severe evaluation in hydrogen embrittlement testing. The reason for that is explained in this paper based on the change in the solution pH induced by a cathodic reaction, which accompanies thiocyanate ion decomposition and governs hydrogen absorption. In addition, the pH dependence of the cathodic reaction governing hydrogen absorption is made clear by using a sodium thiocyanate solution containing a buffer solution to control the solution pH. It is shown that immersing steel specimens in the pH-controlled sodium thiocyanate solution achieves a higher hydrogen content compared with the level attained with the NH4SCN solution.

ブックマーク

SNSによる共有

論文タイトル

チオシアン酸イオン含有水溶液中での鋼材の腐食反応と水素吸蔵に及ぼす比液量と溶液pHの影響

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい