論文検索サイト

材料と環境 Vol. 58 (2009), No. 11

ISIJ International
belloff
オンライン版ISSN: 1881-9664
冊子版ISSN: 0917-0480
発行機関: Japan Society of Corrosion Engineering

Backnumber

  1. Vol. 73 (2024)

  2. Vol. 72 (2023)

  3. Vol. 71 (2022)

  4. Vol. 70 (2021)

  5. Vol. 69 (2020)

  6. Vol. 68 (2019)

  7. Vol. 67 (2018)

  8. Vol. 66 (2017)

  9. Vol. 65 (2016)

  10. Vol. 64 (2015)

  11. Vol. 63 (2014)

  12. Vol. 62 (2013)

  13. Vol. 61 (2012)

  14. Vol. 60 (2011)

  15. Vol. 59 (2010)

  16. Vol. 58 (2009)

  17. Vol. 57 (2008)

  18. Vol. 56 (2007)

  19. Vol. 55 (2006)

  20. Vol. 54 (2005)

  21. Vol. 53 (2004)

  22. Vol. 52 (2003)

  23. Vol. 51 (2002)

  24. Vol. 50 (2001)

  25. Vol. 49 (2000)

  26. Vol. 48 (1999)

  27. Vol. 47 (1998)

  28. Vol. 46 (1997)

  29. Vol. 45 (1996)

  30. Vol. 44 (1995)

  31. Vol. 43 (1994)

  32. Vol. 42 (1993)

  33. Vol. 41 (1992)

  34. Vol. 40 (1991)

材料と環境 Vol. 58 (2009), No. 11

希薄Cl環境中におけるステンレス鋼のすきま腐食発生時間におよぼす電位と温度の影響

崎谷 美茶, 松橋 亮, 松橋 透, 高橋 明彦

pp. 378-385

抄録

Potentiostatic tests of stainless steel specimens with crevice between metal and glass were carried out in 460 ppm Cl solution at temperatures of 298 K, 323 K and 353 K in order to clarify effects of potential and temperature on incubation time, tINCU, for crevice corrosion. The test surfaces were polished just before the tests.
The tINCU increased with the decrease in potential. The charge density, QINCU, which was required for initiation of crevice corrosion, was independent of potential in constant temperature conditions, and it decreased with the increase in temperature. It is considered that hydrolysis reaction rate of dissolved metal ions increases with temperature, and therefore pH of anolyte within crevice can decreases below depassivation pH with few amounts of dissolved metal ions or increase of chemical dissolution of passive film , and the both.
It is because potential dependence of tINCU is derived from increase of iINCU, average dissolution current density of metal with noble potential. For all kinds of stainless steels tested, tINCU and QINCU decreased with the increase in temperature, and iINCU, on the other hand, increased with temperature. From Arrhenius plotting of these parameters, activation energies of tINCU, iINCU and QINCU for various kinds of stainless steels were obtained, and reactions during crevice corrosion occurrence were presumed.

ブックマーク

SNSによる共有

論文タイトル

希薄Cl環境中におけるステンレス鋼のすきま腐食発生時間におよぼす電位と温度の影響

炭酸塩を含む地層処分模擬環境における純銅のアノード分極挙動と皮膜破壊電位の検討

川崎 学, 谷口 直樹, 内藤 守正

pp. 386-394

抄録

In order to clarify the influence of environmental factors on the corrosion behavior of copper overpacks in oxidizing environment, potentiodynamic and potentiostatic anodic polarization tests were performed in carbonate aqueous solutions at 80°C. As the results, the passivation was promoted and film breakdown was suppressed in higher carbonate concentrations, in lower chloride ion concentrations, and in higher pH conditions. The sulfate ion tended to promote the film breakdown of copper. The effects of the composition of the test solutions on the anodic polarization curve of copper in bentonite/sand mixture were quite smaller than those in simple aqueous solution. By comparison with previous data for lower temperature condition, it was clarified that passivation of copper was promoted in higher temperature condition, but breakdown potential, Eb was independent of temperature. The Eb, was expressed as a function of the ratio of aggressive ion and inhibiting ion such as [Cl]/[HCO3] and [SO42−]/[HCO3], and it was confirmed that the Eb was lowered with increasing the ratio. When the ratio exceeds a certain value, the Eb was no longer able to be determined since the anodic poralization curve becomes active dissolution type. The lower limit of Eb in passive type region was estimated to be about −200 mV vs. SCE. The results of potentiostatic tests showed that pitting corrosion or non-uniform corrosion was observed at the potentials over Eb or second current peak potentials in anodic polarization curve.

ブックマーク

SNSによる共有

論文タイトル

炭酸塩を含む地層処分模擬環境における純銅のアノード分極挙動と皮膜破壊電位の検討

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい